Задачи по химии
1 рода. Вызван неравномерной поляризацией ртутной капли. Такие мак-мы наблюдаются для сильно разбавленных р-ров. В нижней части ртутной капли скапливается больше зарядов, чем в верхней. При этом капля стремится выровнять свою поверхность натяжения на всех участках и начинается давление ртути снизу вверх (катод), сверху вниз (анод). В результате таких движений происходит перемешивание ближайшего к капле слоя р-ра, ток увеличивается. Мак-м 1 рода устраняют с помощью поверхностно активными в-ми, которые тормозят движение поверхности ртути и явл-ся диффузионными. В качестве ПАВ использовать желатин, столярный клей (ПАВ – поверхностно активные в-ва).
2 рода. Появляется при работе с быстро капающими капиллярами при высоких конц-ях эл-тов (выше, чем 0,1 моль). Струя ртути о ндо разрывается так, что появляются вехревые струйки ртути, которые приводят в движение всю поверхность капли. И увлекают за собой прилегающие слои р-ра. Происходит перемешивание, повышается ток. Максимум 2 рода имеет более сильную форму, чем мак-м 1 рода. Уменьшают с помощью замены капилляров, с уменьшением скорости капания и применяется ПАВ.
13.Миграционный ток. Мешающее влияние миграционного тока в полярографии. Р-р фон, его состав и назначение. Примеры. Потенциал полуволны, факторы, влияющие на его величину. Полярограмма смеси ионов. Качественные определения в полярографии.
Восст-щиеся или ок-щиеся ионы в отсутствии постороннего эл-та достигают поверхности эл-да под действием 2-х факторов: диффузии и миграции. Миграция – перемешивание ионов под действием электростатического поля катода. В следствии миграции кол-во катионов, (10-2%) поступающих к катоду в ед-цу времени, увеличивается и предельный ток возрастает. Iпред=Iдиф+Iмигр. Миграционный ток может значительно исказить вид полярограммы. Ионы фона располагаются у поверхности эл-да. Электрическое поле эл-да этими ионами не распространяется в глубину р-ра. Кол-во восст-ся ионов, перемешивающихся под действием поля, ничтожно мало по сравнению с кол-вом диффундирующих ионов.
В качестве фона применяют соли щелочных, щелочноземельных Ме, соли аммония, гидроксид аммония, щёлочи, кислоты при конц-ии в 100-1000 раз превышающей конц-ию определяемого в-ва. Фон значительно увеличивает электрическую проводимость анализируемого р-ра.
В основе качественного поляр-ого анализа лежит измерение потенциала полуволны. U1/2 – потенциал соответствующий середине поляр-ой волны.
зависит от природы в-ва ,от состава среды (фона). φв=φ0+0,059*lgС/n.
Иссслед-ый р-р поляр-ют и регистрируют силу тока, по данным чертят поляр-му, на графике находят потенциал полуволн, найденные полуволны учитывают фон и сравнивают с табличным и определяют к каким в-вам они соответствуют.
Табличные данные и приводятся в справочниках по аналитической химии и литерату-
ре поляр-ии. Данные делются относительно каломельного эл-да. При анализе учитывают, что элементы дают раздельные волны, если разница в потенциалах полуволн составляет не менее 0,2В, иначе они сольются. Некоторые ионы (2,3 валентные) могут дать несколько волн: Cu в аммиачном р-ре (2 волны) нижняя - Cu2++1е=Cu+, - верхняя Cu++1е=Cu0. количественное определение в данном примере находится по верхней волне.
14.Уравнение Ильковича для предельного диффузионного тока. Количественный полярографический анализ. Метод градуировочного графика, метод сравнения, метод добавок.
Для количественного определения в-ва используется прямо пропорциональная зависимость между силой предельного диффузионного тока и конц-ей в-ва. Эта зависимость выражается различными уравнениями для разных типов используемых эл-дов и для случая ртутно-капельного эл-да носит название уравнения Ильковича:
Iпр=605nД1/2m2/3t1/6C, где iпр – сила предельного диффузионного тока, мкА; n – число эл-нов, участвующих в электрохимической реакции, С – конц-ия определяемого в-ва, ммоль/л; D – коэффициент диффузии ионов, см2*сек-1; m – масса ртути, вытекающей из капилляра в 1 сек, мг; t – время образования одной капли или время жизни, сек.
При полярографировании создают условия, при которых величины m и t остаются постоянными. Тогда все постоянные величины можно объединить в одну постоянную К и получить следующее уравнение: iпр=КС. Заменим величину силы тока Iпр на пропорциональную ей величину h. Получим уравнение: h=КС, где h – высота волны; К – коэф-нт пропорциональности; С – концентрация.
Метод градуировочного графика. Полярографируют ряд ст. р-ров определяемого эл-та, измеряют их высоты волн. По полученным данным строят градуировочный график в координатах высота волны – содержание или конц-ия компонента. Полярографируют анализируемый р-р в тех же условиях, измеряют высоту волны и по графику находят неизвестное содержание определяемого в-ва.
Метод стандартов. В совершенно одинаковых условиях снимают полярограмму анализируемого р-ра, а затем полярограммы 2-3 ст. р-ров, подобранных в такой конц-ии, чтобы полученные высоты волн при той же чув-ти гальванометра были примерно равны высоте волны, полученной при полярографии анализируемого р-ра.
Для анализируемого р-ра: hх=КСх.
Для ст-ого р-ра: hст=КСст. разделим одно уравнение на другое hх/hст=Сх/Сст; Сх=Сстhх/hст.
Метод добавок. Метод может быть выполен расчётным или графическим способом. Расчётный способ состоит в следующем: измеряют высоту волны анализируемого р-ра. Далее измеряют высоту волны этого же р-ра с добавкой некоторого известного кол-ва в-ва. Значения высот волн будут равны: hх=КСх, hх+доб=К(Сх+Сдоб), где hх+доб – высота волны анализируемого р-ра с добавкой; Сдоб – конц-ия добавки в анализируемом р-ре. Составим пропорцию: (hх+доб-hх)-Сдоб и hх-Сх, тогда Сх=Сдоб*hх/hх+доб-hх.