Задачи по химии
1.если в-во в ряду напряжений находится до алюминия включительно:
К=2Н2О+2е→Н2++2ОН-
2.если Ме стоит в интервале отAl до Н то: К= Zn2++2e→Zn0, 2Н2О→Н2+2ОН-.
3.если в-во стоит после Н, то: К=Cu2++2e→Cu0.
На аноде. 1.Если анион является остатком без кислородной кислоты, то он и будет реагировать: А 2Cl—2e→Cl2. 2.Если анион является остатком кислорода, содержащей кислоты SO42-, NO3, РО4, тогда: А 2Н2О-4е→4Н2++2О2. 3.Если гидроксид ион:
А 4ОН-4е→2Н2О+О2.
Согласно законам Фарадея масса электрохимически окисленного или восст-ого в-ва равна: m=M*Q/nF, где Q – кол-во электричества равное I*t. m=MIt/nF.
10.Кулонометрическое титрование, сущность метода. Ячейка для КТ, устройство. Реакция электрогенерирования титранта. Визуальные и инструментальные способы индикации точки экв-ти. Определение времени титрования. Вычисление результатов анализа.
Кулонометрия основана на измерении кол-ва электричества, затраченного на электропревращение определяемого в-ва (прямая кулонометрия) или на получение титранта, реагирующего с определяемым в-вом (косвенная кулонометрия).
m=M*Q/nF, где Q – кол-во электричества равное I*t, n – число эл-нов, участвующих в превращении; F – постоянная Фарадея, 965000Кл/моль.
Метод прямой кулонометрии применяют для определения только электроактивного в-ва, поскольку он основан на непосредственном электропревращении этого в-ва. Измерение можно проводить либо при постоянной силе тока, либо при постоянном потенциале рабочего эл-да. Косвенная кулонометрия (кулонометрическое титрование) применяется чаще, так как этот вариант пригоден для определения и электроактивных, и электронеактивных в-в. Титрант для кулонометрического титрования получают на рабочем или генераторном эл-де из вспомогательного реагента (например, в результате окисления I- до I2), из растворителя (например, в результате восст-ия воды до ОН- ионов), материал электрода (например, в результате ок-ия Ag до Ag+). По мере образования титрант вступает в реакцию с анализируемым в-вом, например, титрант I2 взаимодействует с тиосульфатом натрия по реакции: 2Na2S2O3+I2→Na2S4O6+2NaI.
Для установления конечной точки титрования используются визуальные и инструментальные методы (потенциометрия, амперометрия). Сила тока должна быть постоянной в течение электролиза. Массу определяемого в-ва рассчитывают по формуле: m=M*Q/nF, где Q – кол-во электричества равное I*t, то Кл=А*с; m=MIt/nF, где I – сила тока, А; t – время электролиза, с.
Ячейка для КТ содержит рабочий эл-д и вспомогательный, отделённый от рабочего полупроницаемой мембраной (пористое стекло, целлофановая плёнка). Обычно его помещают в сосуд с пористым дном, внутрь которого заливается подходящий электролит (KCl,KSO4). Это в случае применения визуального способа индикации т.э. Если используют инструментальные способы индикации, например, потенциометрический, то, кроме рабочего эл-да, в анализируемый р-р опускают ещё два эл-да – индикаторный и сравнения.
Основное преимущество КТ – не нужно готовить титрант заранее, стандартизировать его и хранить. С помощью одного и тогоже источника тока можно получать любые титранты, в том числе и неустойчивые.
Выход по току - это отношение кол-ва электропревращённого в-ва к теоретически вычисленного по закону Фарадея: =m(практич)*100%/m(теоретич).
11.Сущность вольтамперометрического анализа. Полярография с ртутным капающим эл-дом. Схема полярографа. Получение полярограммы, её объяснение.
Вольтамперометрический метод анализа основан на регистрации и изучении зависимости силы тока, протекающего через электролитическую ячейку, от внешнего наложенного напряжения. Графическое изображение этой зависимости называют вольтамперограммой. Анализ вольт-мы даёт информацию о качественном и количественном составе анализируемого р-ра. Для регистрации вольт-мм используют электролитическую ячейку, состоящую из индикаторного эл-да и эл-да сравнения – насыщенный каломельный эл-д или слой ртути на дне электролизера (донная ртуть).
Электрохимический метод анализа, в основе которого лежит зависимость между хар-ром поляризации рабочего эл-да и составом р-ра, в котором он находится, называется полярографией. Само слово полярография означает запись процесса поляризации.
В электролизер, содержащий анализируемый р-р помещается Ме ртуть, которая явл-ся анодом. Катодом служит ртутный капающий эл-д. Капилляр этого эл-да погружён в анализ-ый р-р. Через электролизер протекает постоянный ток, напряжение которого можно изменять с помощью реохорда и измерять гальванометром его силу. В ртуть вводят контактный провод, подключённый к источнику постоянного тока, поэтому капля ртути на кончике капилляра до момента её отрыва явл-ся эл-ном (чаще всего катодом). Скорость капания ртути должна быть равномерной и составлять одну каплю за 3-5 сек.
Поверхность ртути на дне электролизера больше поверхности капли катода в несколько тысяч раз. При прохождении небольших по величине токов потенциал данной ртути остаётся постоянным и эл-д не поляризуется. Приложенный к ячейке напряжение рассчитываем по формуле: Е=φа-φк+IR, где φа – потенциал, анода, φк – потенциал катода, R – сопротивление р-ра. Несмотря на высокое напряжение потенциал анода во время эл-за остаётся постоянным, т.к. на его большой поверхности создаётся малая сила тока и поэтому изменение конц-ии эл-та при анодном слое не значительно. Е=-φк, φа=const, IR=мала. В качестве неполяризующегося эл-да можно применять каломельный эл-д с большой поверхностью.
12.Помехи, искажающие полярографическую волну. Мешающее влияние растворённого кислорода, его устранение в нейтральных, щелочных и кислых средах. Полярографические максимумы первого и второго рода, их устранение.
Кислород восст-ся на ртутном катоде даёт две волны, т.к. восст-ся в две стадии: О2+2Н++2е→Н2О2 1 стадия, Н2О2+2Н++2е→2Н2О 2 стадия. Так как кислород восст-ся раньше других катионов, то происходит искажение волны, что мешает определению исслед-ого в-ва. Особенно сильно кислород мешает опред-ию Ме, потенциал которых близок к 0 (медь, сурьма, свинец, кадмий). Кислород следует удалять из р-ра. Если иссле-ый р-р имеет щелочную или нейтральную среду, то кислород устраняется легко, к р-ру прибавляют Na2SO3+1/2О2→Na2SO4. Если исслед-ый р-р имеет кислую среду, то процесс идёт сложнее. Перед полярографированием в течение 20 минут пропускают газ (Н2, СО2, N2). Газы удаляют кислород из р-ров.
Максимумы 1 и 2 рода. В области предельного диффузионного тока могут возникать мак-мы различной формы, которые искажают волну и затрудняют измерение высоты полярограммы. Максимумы разделяются на первого и второго рода.