Гетерогенный катализ
на W: нулевой порядок по аммиаку.
Рассмотрим классический пример – газофазную реакцию: H2+1/2O 2= H2O
Истинный механизм этой реакции состоит из многих стадий (до 30). Существуют различные подходы к его описанию. Выделим лишь некоторые наиболее характерные стадии, и введём очень упрощённую модельную схему, пригодную для классификации основных элементарных превращений, и с их помощью выделим главные особенности и выявим возможные режимы протекания всего процесса. Они возникают из-за конкуренции стадий разветвления и обрыва. Приводимый ниже механизм реализуется при невысоких давлениях (несколько десятков тор) (см. М.Н. Варгафтик, «Химическая кинетика» кафедральное пособие МИТХТ под ред. акад. Я.К. Сыркина, 1970, стр. 89, а также учебник «Физическая химия» под ред. К.С. Краснова, стр. 608). Основные стадии представим в нижеследующей таблице.
Упрощённый механизм разветвлённой цепной реакции H2+O2= H2O |
Баланс активных центров на отдельных стадиях |
Скорости элементарных стадий | |||||||
№ |
Элементарные реакции |
Исх. |
Кон. |
Скорость |
Природа стадии | ||||
1 |
H2 |
+ O2 |
2 HO |
|
r1=k1[H2][O2] |
Зарождение | |||
2 |
HO |
+ H 2 |
H2O |
+ H |
|
|
r2=k2[H 2][HO] |
Продолжение | |
3 |
H |
+ O 2 |
HO |
+ O |
|
( ) |
r3=k3[O2][H] |
Разветвление | |
4 |
O |
+ H2 |
HO |
+ H |
( ) |
|
r4=k4[H2][O] | ||
5 |
H |
+ O2 + M |
HO2 |
+ M |
|
() |
r5=k5[M][O2][H] |
квадрат. |
Обрыв |
6 |
H |
+ M |
1/2 H2 |
+ M |
|
r6=k6[M][H] |
линейн. |
Стадия 4 считается разветвлением (см. Панченков – Лебедев, стр.261, табл.27), поскольку здесь происходит пространственное разделение двух свободных валентностей; из единого центра возникают два пространственно независимых. Элементарные акты линейного обрыва (стадия 5) происходят на стенке. (На стадии 5, а далее и 6 более строго следовало бы частицы M заменить удельной поверхностью стенки S). Акты квадратичного обрыва происходят в объёме, а на стенке обрыв уже мономолекулярный (стадии 5 и 6).
Теория пределов взрыва приведена у Панченкова и Лебедева, а также у Лейдлера .
В реакционной газовой смеси (в пламени) содержится до 18% атомарного водорода. Для расчёта режимов образования и расходования этих наиболее активных частиц вводится упрощение, называемое методом полустационарных концентраций Н.Н.Семёнова, который состоит в том, что квазистационарное приближение вводится только для менее активных частиц. Концентрация наиболее активных частиц в принципе не может быть стационарной. На этой основе удаётся принципиально упростить схему её расчёта.
(9.1)
1) Цепной разветвлённый процесс есть результат суперпозиции стадий четырёх типов: зарождения, продолжения, разветвления и обрыва. На стадии продолжения число активных центров остаётся неизменным. Поэтому желательно в уравнении 3) от неё избавиться, и сосредоточиться на трёх основных стадиях, конкуренция которых формирует специфику именно разветвлённого процесса.
2) Поскольку за разветвление ответственны наиболее активные частицы - атомарный водород, то цель преобразований состоит в том, чтобы именно его концентрацию ввести всюду в явном виде. Равенство позволяет записать: . Благодаря уравнению 2) из главного в нашей задаче уравнения 3) :
а) исключаем скорость , и б) заменяем скорость скоростью , и получаем формулу (9.2).