Вискозиметрия и кинетика начальных стадий отверждения полиуретанов
Рефераты >> Химия >> Вискозиметрия и кинетика начальных стадий отверждения полиуретанов

Химизм реакций образования полиуретанов исследовали во многих работах, что позволило составить общее представление об этом процессе [1]. Значительно меньше изучено изменение реологических свойств в процессе образования полиуретанов [2, 3], хотя этот вопрос представляет как общетеоретический, так и технологический интерес.

Процесс формирования трехмерных сетчатых структур при образовании полиуретанов (ПУ) из полифункциональных олигомеров можно рассматривать как происходящий в две стадии [2—4]. Вначале интенсивно увеличивается вязкость вследствие удлинения цепей и образования ветвлений при сохранении текучести реакционной массы, затем в критической точке («гель-точке»), когда образуется сплошная трехмерная сетка химических связей, текучесть утрачивается. С точки зрения оценки технологических свойств («перерабатываемое»), наибольший интерес представляет первая стадия, когда отверждаемый ПУ способен формоваться в изделия. В литературе описаны многие результаты изучения кинетики процесса образования ПУ, выполненные различными методами (ИК-спектроскопия, дифференциально-сканирующая калориметрия, торсионный анализ и т. д.) [1]. Однако наиболее прямую информацию относительно влияния протекания химической реакции на свойства образующегося ПУ дает вискозиметрический метод, который позволяет также высказать определенные суждения о макрокинетике процессов образования полимеров, поскольку может быть установлена связь между нею и реокинетикой полимеризации или поликонденсации [5].

В этой связи задача настоящей работы - изучение закономерностей роста вязкости в процессе отверждения ПУ в связи с исследованием кинетики начальной стадии этого процесса.

Исследовали макродиизоционат, синтезированный на основе политетраметилен-гликоля и 2,4-толуилендиизоционата в мольном соотношении 1: 2.Исходный политетраметиленгликоль содержал 3,5% гидроксильных групп. Mw/Mn, определенное гель-хроматографически, равно 1,7; Af„=1020 (эбуллиоскопия). Перед синтезом 2,4-то-луилендиизоционат перегоняли в вакууме (1,33 кПа) при 120°. Синтезированный макродиизоционат анализировали на содержание NCO-групп по известной методике. Отвердителем служил 3,3'-дихлор-4,4'-диаминодифенилметан, двукратно перекристаллизованный из гептана.

Реокинетические исследования проводили на ротационном вискозиметре «Рео-тест-2» с рабочим узлом конус-плоскость при низких скоростях сдвига. Для получения реакционной смеси макродиизоционат смешивали с необходимым количеством предварительно расплавленного 3,3'-дихлор-4,4'-диаминодифенилметана (т. пл. 103,2°) в быстродействующем смесительном устройстве при комнатной температуре. Затем реакционную смесь (~0,1 мл) помещали в рабочий узел вискозиметра, нагретый до температуры опыта. Специально проведенные эксперименты показали, что вследствие небольшого объема навески и интенсивного теплоотвода режим отверждения близок к изотермическому. Отклонения температуры от заданной не превышали 1°. Параллельно при условиях, которые стремились сделать максимально адекватными используемым в реокинетическом эксперименте, проводили отверждение реакционной системы вне вискозиметра с тем, чтобы оценить кинетику процесса: для этого через определенные промежутки времени определяли содержание NCO-групп. Погрешность при определении вязкости не превышала 6%, концентрации NCO-групп 5%. Третьей (кроме вискозиметрической и химической) независимой методикой изучения кинетики отверждения была калориметрия, с помощью которой оценивали скорость тепловыделения в процессе отверждения.

Рис. 1. Изменение концентрации концевых NCO-групп (а) и среднечис-ленной степени поликонденсации (б) в процессе реакции макродиизо-пианата с 3,3'-дихлор-4,4'-диаминодифенилметаном при 60 (1), 70 (2), 80 (3), 90 (4), 100° (5)

Увеличение вязкости на начальных стадиях отверждения ПУ может быть обусловлено удлинением макромолекулярных цепей вследствие протекания процесса линейной конденсации, поскольку используемые олиго-меры представляют собой бифункциональные соединения. В этом случае скорость роста макромолекулярных цепей отражается кинетикой уменьшения концентрации концевых функциональных групп. Изменение концентрации концевых NCO-групп до образования визуально наблюдаемой в растворе нерастворимой фракции показано на рис. 1, а. Кинетика процесса поликонденсации двух бифункциональных мономеров при их экви-мольном соотношении обычно описывается уравнением второго порядка по концентрации функциональных групп, интегрирование которого дает следующее известное выражение для среднечисленной степени поликонденсации образующего полимера: N—l=Xokt, где N — степень поликонденсации; Хо — начальная концентрация функциональных групп; к — константа скорости реакции; t — время.

Результаты обработки экспериментальных данных по этой формуле приведены на рис. 1, б. Однако экспериментальные данные на рис. 1, б аппроксимируются не одной прямой, а двумя линейными участками с различными угловыми коэффициентами. Изменение угла наклона прямой на рис. 1, б может свидетельствовать либо об изменении константы скорости (т. е. в данном случае об ускорении реакции на втором этапе), либо об изменении механизма реакции после нескольких начальных актов конденсации. К аналогичным выводам, свидетельствующим о невозможности описания даже начальных стадий отверждения одним значением константы скорости, приводит также обработка данных изотермической калориметрии.

В предположении второго порядка реакции и пропорциональности скорости превращения £1 интенсивности тепловыделения q зависимость q($) должна иметь вид

где с — нормирующая приборная константа, связывающая J3 и q и пропорциональная суммарному тепловому эффекту реакции. Константу с следует подбирать так, чтобы наилучшим образом аппроксимировать экспериментальную зависимость q(t) с помощью функции (1). Это проделано на рис. 2, из которого видно, что если такая аппроксимация вполне удовлетворительна для большей части процесса на его второй (заключительной) стадии, то она не годится для первой стадии. Справедливо и обратное. Это означает, что константа к не может быть постоянной для всего процесса.

Рис. 2. Изменение скорости тепловыделения д (1) и степени превращения $ (2) в процессе реакции

Рис. 3. Изменение вязкости реакционной массы во времени, а: 60 (1), 70 (2), 80 (3) и 90° (4); б: количества 3,3'-дихлор-4,4'-диаминодифенилметана 1,1 {Т); 1,0 (2); 0,9 (3); 0,8 (4); 0,7 мол.% (5); 80°

Характерно, что точка расхождения экспериментальной и расчетной кривых на рис. 2 совпадает с точкой перелома на рис. 1, б. Полученные результаты, т. е. изменение наклона прямой на рис. 1, б и расхождение кривых на рис. 2, свидетельствуют о том, что в рассматриваемом случае изменяется характер процесса, отражающийся на его кинетике. Попытаемся понять причину этого явления с помощью реокинетического анализа.


Страница: