Атом гелия. Двухэлектронный коллектив на примере атома гелия
5. Эти функции наделяются свойствами нормировки и ортогональности, а именно:
или проще.
6. Для коллектива из двух электронов мультипликативные спин-функции принимают вид:
Подобно пространственным (орбитальным) функции, спин-функции – линейные комбинации должны быть симметризованы и затем нормированы:
Симметризованный набор содержит:
Нормировка аналогична пространственным (орбитальным) двухэлектронным ВФ, т.е.
7. Результирующие спиновые функции распадаются на два типа симметрии:
Одна из них антисимметрична:
Три из них симметричны к перестановкам:
Их удобно записывать массивами. Ниже приведена их упорядоченная запись.
Спиновые состояния отдельных частиц дают суммарное состояние:
( ; ¯; ¯¯ )- триплет, Ms(1,2)= (1/2+1/2)=1; (1/2-1/2)=0; (-1/2-1/2)= -1.
Суммарное квантовое число принимает три значения: Ms=(1, 0, -1).
Эта тройка состояний соотносится с суммарным квантовым числом модуля: S=1.
а также ( ¯ )- синглет, Ms(1,2)= (1/2-1/2)=0.
Суммарное квантовое число принимает одно значение: Ms= 0.
Это одно состояние соотносится с суммарным квантовым числом модуля: S=0.
Упорядочим нумерацию. Симметричные спин-функции образуют триплет:( симметричные ВФ)
Ms=(1, 0, -1) Þ S=1.
Антисимметричная спин-функция образует синглет: (антисимметричная ВФ)
Ms= 0 Þ S=0.
8. Вдали от релятивистских скоростей, в области скоростей (~107 м/с) движений частиц, относительно малых по сравнению со скоростью света (3´108 м/с), можно приближённо рассматривать как независимые пространственные и спиновые свойства электронной оболочки.
9. В этом простом случае двухэлектронная Полная Волновая Функция (ПВФ) может быть составлена в виде произведения независимых сомножителей - пространственного и спинового. Такие сомножители построены, и каждый из них обладает определённой перестановочной симметрией.
10. Принцип Паули (6-й постулат нерелятивистской квантовой механики). Полная волновая функция многоэлектроного коллектива антисимметрична к перестановкам любой пары электронов.
11. Квантовые состояния двухэлектронной оболочки атома гелия – Термы.
12. ПВФ двух конфигураций:
1s2 (симметричная ВФ); aa 1s(1)1s(2)
1s12s1(симметричная ВФ; ab+ba 1s(1)2s(2)+ 2s(1)1s(2)
С каждой из этих двух ВФ комбинировать может лишь антисимметичная спин-функция, т.е.:
Результат: Конфигурация 1s2 содержит одно состояние . Синглет
Конфигурация 1s12s1 содержит одно состояние . Синглет
1s12s1 (антисимметричная ВФ); ab - ba 1s(1)2s(2) - 2s(1)1s(2)
С нею комбинировать могут лишь три симметричные спин-функции, т.е.: Триплет спиновых функций
Результат: Конфигурация He* (1s12s1) содержит три состояния. Триплет
Энергетические уровни, порождаемые в первой возбуждённой конфигурации:
Синглет 1s12s1
Пространственная часть волновой функции: (ab+ba)/(21/2)
Триплет 1s12s1
Пространственная часть волновой функции: (ab - ba)/(21/2)
Расчёт уровней.
Гамильтониан системы двух электронов:
H(1,2)=H1+ H2+1/r12
А) Энергия двухэлектронной оболочки в основной конфигурации:
E0=<aa |H| aa >=<aa|H1+ H2+1/r12| aa >=
=<aa|H1| aa >+<aa|H2| aa >+<aa|1/r12| aa >=
=<a|H1| a><a|a>+<a|a><a|H2|a >+<aa|1/r12| aa >=
=<a|H1| a><a|a>+<a|a><a|H2|a >+<aa|1/r12| aa >=
= Ea +Ea+<aa|1/r12| aa>=2Ea+<aa|1/r12| aa>=2Ea+Jaa; ®
E0=2Ea+Jaa;
В этой формуле слагаемые энергии двухэлектронного коллектива на одной орбитали это
1) Сумма орбитальных энергий:
Eoo=2Ea
2) Кулоновский интеграл. Это средняя энергия отталкивания электронов, заселяющих одну общую орбиталь a:
Jaa =<a2|1/r12|a2>
Результирующие уровни энергии одноорбитальной конфигурации можно записать в компактной форме:
E0 =2Ea+Jaa.
Б) Энергия двухэлектронной оболочки в возбуждённой конфигурации:
E±=<ab±ba|H|ab±ba>=(1/2)<ab±ba|H1+ H2+1/r12|ab±ba>=
= {<a|H1|a><b|b>±<a|H1|b><b|a>+
±<b|H1|a><a|b>+<b|H1|b><a|a>+
+<b|H2|b><a|a>±<b|H2|a><a|b>+
±<a|H2|b><b|a>+<a|H2|a><b|b>+
+ <ab|1/r12|ab>±<ab|1/r12|ba> +
± <ba|1/r12|ab>+<ba|1/r12| ba>}/2=
= {<a|H1|a>+<b|H1|b>+<b|H2|b>+<a|H2|a>+
+<ab|1/r12|ab>±<ab|1/r12|ba>±<ba|1/r12|ab>+<ba|1/r12| ba>}/2;
E±= {Ea+Eb+Eb+Ea}/2
+{<ab|1/r12|ab>+<ba|1/r12| ba>}/2
±{<ab|1/r12|ba>+<ba|1/r12|ab>}/2.®
E±= {Ea+Eb}+<a2|1/r12|b2>±<ab|1/r12|ba>.
Энергия двухэлектронной оболочки в возбуждённой конфигурации:
E±= {Ea+Eb}+<a2|1/r12|b2>±<ab|1/r12|ba>.
В этой формуле слагаемые энергии двухэлектронного коллектива на двух орбиталях это
3) Сумма орбитальных энергий:
Eorb=Ea+Eb
4) Кулоновский интеграл. Это средняя энергия отталкивания электронов, заселяющих две различные орбитали a и b:
Jab =<a2|1/r12|b2>
5) Обменный интеграл. Это средняя энергия отталкивания электронов, делокализованных между двумя различными орбиталями a и b:
Kab=<ab|1/r12|ba>
Результирующие уровни энергии двуорбитальной конфигурации можно записать в компактной форме:
E± ={Ea+Eb}+J ± K; (знак + даёт уровень синглета; знак – даёт уровень триплета).
Получено первое правило Хунда:
“В пределах одной электронной конфигурации электронной оболочки ниже всех лежит терм с максимальной мультиплетностью“.
РЕЗЮМЕ:
Совершенно так же можно построить волновые функции для оболочки молекулы водорода H2. В лекционном курсе обе задачи вполне взаимозаменяемы. Проблему перестановочной симметрии можно обсуждать в пределах двух конфигураций, начиная с симметризации двух одноэлектронных орбитальных состояний – сомножителей типа .
1) Конфигурация 1 порождает всего одно состояние – один уровень:
a(1)a(2)º aa®Eaa ;
2) Конфигурация 2 порождает два состояния – два уровня (она расщеплена):
a(1)b(2)º ab и
b(1)a(2)º ba, так что
(ab, ba) ® ab±ba ® Eab±ba ;
Одна двухэлектронная двуорбитальная конфигурации породила 2 состояния.
Симметричная комбинация комбинирует с одной антисимметричной спин- функцией (ab -ba), образуя 1 состояние – синглетный уровень (синглет).
Антисимметричная комбинация комбинирует с симметричным набором из трёх спин-функцией (aa, ab+ba, bb), образуя 3 состояния – триплетный уровень (триплет).
3) Конфигурация 3 порождает всего одно состояние:
b(1)b(2) º bb ® Ebb ;
Соответственно, легко расчитать энергию каждого из состояний .
Знак минус приводит к выводу, что в двуорбитальной конфигурации триплет лежит ниже синглета .
В расчёте следует предварительно нормировать все двухэлектронные функции, как орбитальные, так и спиновые.
Наши результаты не зависят от конкретной системы.