Анализ биологических тканей и жидкостей
Прогресс в области ионометрии и разработки новых ИСЭ с улучшенными характеристиками, в частности, на основе полевых транзисторов привел к появлению разнообразных потенциометрических сенсоров, устройств и приборов для определения органических и неорганических, в том числе и лекарственных, соединений в различных условиях (в потоке жидкости, в очень малых объемах растворов и т.д.). Современная биохимическая лаборатория имеет возможность использовать ионометрические установки как для прямого определения, так и для потенциометрического титрования в водных и неводных средах.
Достигнутые успехи не означали отсутствие проблем, обусловленных перманентными требованиями к необходимой воспроизводимости, надежности, чувствительности, а также селективности определений, особенно для электродов-сенсоров с амперометрическим откликом, которые порой трудно достигались, поскольку компоненты, определялись в сложных по составу матрицах. Потенциометрические сенсоры на основе мембран с включенными в них электроактивными органическими соединениями показали достаточно высокую селективность при определении этих же соединений в испытуемом растворе. Их используют при анализе порошков, суппозитарий, таблеток и других лекарственных форм; при этом не требуется сложная пробоподготовка.
Новый этап развития ЭМА применительно к обсуждаемым объектам связан с применением имообилизированных биоматериалов как реагентов нового поколения для модифицирования электродов и создания на их основе биосенсоров.
Функциональо биосенсоры сопоставимы с датчиками живого организма – биорецепторами, способными преобразовывать все типы сигналов, поступающие из окружающей среды, в электрические, которые легко измерить.
Биосенсоры, с одной стороны, можно рассматривать как устройства, работающие на принципах биологического распознавания определяемых молекул или других частиц. Поэтому их можно отнести к категориям биологических и биохимических методов анализа.
С другой стороны, биосенсоры – это биоэлектронное устройство, включающее чувствительный элемент, тесно связанный с физическим преобразователем либо интегрированный с ним, чаще всего с электродом. Интерес к биосенсорам обусловлен их широким потенциальным применением в контроле состояния окружающей среды и охране здоровья человека.
Многообразие биосенсоров объясняется различной природой биоматериала, типом физического преобразователя, способами регистрации электрического сигнала. Сама их конструкция может быть тесно связана с применением.
Что касается метода регистрации, то при интегральной оценке развития ЭМА периода последних 5-15 лет в аспектах биологии и медицины, можно увидеть возрастание удельного веса ВА и родственных методов среди других.
Сейчас наблюдается заметное проникновение идей супрамолекулярной химии в область ЭМА. Молекулярный дизайн и нанотехнология в создании новых электродов и на их основе микроаналитических систем для целей медицинской диагностики теперь рассматривают как еще один путь развития электроанализа и расширения сфер его применения. Самоорганизующиеся монослои (СОМС) на поверхности электродов – это частный случай высокоупорядоченных слоев с точно контролируемой толщиной и направленной ориентацией молекул – представляют уникальную возможность для изучения фунтдаментальных аспектов электроаналитической химии, включая процессы накопления определяемого компонента, селективность СОМС, факторы, влияющие на величину сигнала.
С помощью субстратных биосенсоров определяют широкий круг различных физиологически важных соединений или их метаболитов в растворе или непосредственно в организме человека: глюкозу, мочевину, спирты, органические кислоты и т.д., и решают проблему диагностики заболеваний.
Структура биоаналитики: методы электроанализа в определении компонентов в объемах биомедицинского назначения и фармации
Способ определения |
Определяемый компонент |
Тип сенсора |
Потенциометрия |
H+, K+, NH4+, Na+, Cl-, Mg+, Ca+, NO2-, NO3-, катионы и анионы органичеких оснований и кислот, аскорбиновая кислота, спирты, мочевина, физиологически активные амины, антибиотики, кетоновые тела и др. |
Стеклянные электроды, твердотельные электроды, ИСЭ, ИСЭ не основе полевых транзисторов, газочувствительный эл-д, ИСЭ на основе полимерных мембран с иммобилизированным активным веществом, бислойных липидныхз мембран, биосенсоры и др. |
Амперометрия (вольтамперометрия и ее модификации) |
NO, антиоксиданты, аскорбиновая кислота, ферменты, ДНК, интеркаляторы, антитела, возбудители болезней (вирусы), лекарственные соединения и др. |
ХМЭ-сенсоры с иммобилизированными реагентами, в том числе с откликом на принципах полеклярного распознавания, ДНК-сенсоры, иммуносенсоры, биосенсоры, амперометрические сенсоры с СОМС, бислойными мембранами, реконструированными ферментами и др. |
Амперометрия в сочетании с ВЭЖХ, ПХА, микродиализом и капиллярным электрофорезом (детекторы в потоке жидкости) |
Нейропереносчики, катехоламины, компоненты плазмы крова, межклеточной жидкости и клеток в микрообъемах жидкости, лекарственные средства (вопросы фармакокинетики) |
Ультрамикроэлектроды (металлические, угольно-волоконные, screen-printed), угольно-пастовые электроды, металлические и металлоксидные электроды с каталитическим откликом, электродная система жидкость/жидкость и др. |
Хроноамперометрия |
Гормоны, антибиотики, интеркаляторы, лекарственные соединения |
Сенсоры на основе ХМЭ, СОМС, бислойные липидные мембраны и др. |
Кулонометрия (кулонометрические детекторы) |
Объекты фармации, нейропереносчики, антиоксиданты |
Активные металлические электроды, инертные электроды+источник кулонометрического титранта |
Интерес представляет амперометрический сенсор на гемоглобин в цельной крови. Его быстрый отклик стабилен и воспроизводим и обусловлен окислением гемоглобина при фиксированном потенциале на стеглоуглеродном электроде, покрытом слоем полимера на основе метиловой сини. Этот полимер образуется на поверхности электрода при циклическом изменении потенциала в некотором диапазоне, зависящем от состава раствора.
Из последних достижений в конструировании электрохимических сенсоров можно отметить создание с использованием планарной технологии микросенсорных батарей на основе ИСЭ для определения концентраций ионов водорода и калия в кровотоке работающего сердца. Такие устойства могут найти применение в медицине, в частности при хирургическом вмешательстве в области миокарда.