Национальное хозяйство как система взаимосвязанных рынковРефераты >> Экономическая география >> Национальное хозяйство как система взаимосвязанных рынков
aЗКvЗ+aTKvT=pK (3)
aЗДvЗ+aТДvT=pД
аЗBvЗ+aTBvT=pB
Нам осталось записать функции предложения ресурсов (факторов) производства. Как и с функциями спроса на товары, мы запишем их в общем
виде — просто функции типа G:
(4)
Это еще не все. Пока даже непонятно, к чему все эти уравнения, правда ведь? Ну что же, давайте прибегнем к испытанному методу. Что нужно делать, если хочешь что-то понять? Конечно: рассуждать.
Закон Вальраса
Доход земледельца проистекает от его земли и его труда, а выражается в выручке от продажи кукурузы. Иными словами, выручка от продажи кукурузы распределяется как рента на его землю и оплата его труда (это и есть то, что мы называли прежде вознаграждением факторов производства). То же самое можно сказать про двоих других островитян, не так ли? А если так, тогда — внимание! — вся суммарная выручка от продажи всех (трех) продуктов является суммой вознаграждений всех (двух) факторов, используемых на острове. И вот что получается:
рКхК+рДхД+зВхВ=vЗrЗ+vТrТ (5)
Знак тождества мы ставим здесь потому, что левая часть и правая часть, как мы только что установили, — это одно и то же. Но и тут еще не конец. Мы только что понаписали кучу уравнений. В ней есть уравнения спроса (в левой части стоят «иксы») и уравнения предложения (в левой части стоят «эры»). Вот давайте-ка их быстренько подставим из уравнений (2) и (4) в тождество (5):
PKFK+pДFД+pBFB=v3G3+vTGT (6)
Вот теперь все. Во-первых, мы пишем просто буквы F и G, помня, что это функции спроса и предложения. А во-вторых-
О, тут стоит сделать паузу. В общем, выражение (6) есть не что иное, как знаменитый Закон Вальраса.
Значение закона Вальраса и что он дает.
Сперва укажем, для чего Закон Вальраса не применяется. Он не используется для вычисления цен и других показателей. Нужен Закон Вальраса для рассуждении. О чем говорит этот закон? Он говорит о том, что в состоянии рыночного равновесия совокупный спрос равен совокупному предложению. Но это звучит чересчур обще. Вернемся к тождеству (5). О чем оно нам говорит? О том, что совокупные доходы равны совокупным расходам. Сказать (5) — значит сказать (6). И наоборот.
Словесная формулировка выражения (5) напоминает что-то такое, что мы давно уже проходили. Ну конечно, все уже догадались: тождество Сэя!
Действительно, Закон Вальраса сильно напоминает Закон Сэя в варианте "тождества". Можно сказать больше: если брать Закон Вальраса в том виде, как мы его подали выше, он просто идентичен тождеству Сэя.
Однако сам Вальрас, понятное дело, имел в виду не остров с тремя производителями, а народное хозяйство современной страны, где многие тысячи производителей поставляют на рынок сотни тысяч видов товаров, покупаемых миллионами потребителей. Так что Закон Вальраса нужно записать в более общем виде:
сумма всех pjFj = сумме всех viGi
Мы уже раньше условились о том, что ресурс i — это любой ресурс. Если всех ресурсов не два, как у нас на острове, a m, тогда i = 1, 2, 3, ., n (i пробегает все натуральные числа от 1 до m).
Мы также условились, что продукт i — это любой продукт. Если всех продуктов не три, а n, тогда i = 1, 2, 3, ., n (j пробегает все натуральные числа от 1 до n).
Математики, которые не любят писать уравнения с употреблением слов, придумали буквенные обозначения; (i = 1, 2. …, m) и (j =1, 2, …, n) называются так: пределы суммирования. И вместо слова "сумма" они договорились писать греческую букву "сигма".
Теперь — в полном математическом облачении — Закон Вальраса выглядит так:
(7)
(Сумма piFi. по всем j от 1 до п тождественно равна сумме viGi, по всем i от 1 до m)
В таком виде Закон Вальраса еще не отличается от тождества Сэя. Так что идем еще немного дальше.
Для чего мы выписывали уравнения (1) и (З)? Пока что мы о них попросту забыли. Давайте вернемся к ним. В системе (1) умножим первое уравнение на v3, а второе — на vT И перейдем от этого частного случая к общей формуле (7). В левой части тождества (7) мы получим теперь åaijvixj. Затем умножим в системе (3) первое уравнение на хK, второе — на xД, третье — на хB. И опять перейдем к обшим обозначениям, Тогда в правой части тождества (7) получаем åpjxj.
Из всего, что мы проделали до сих пор, следует, что в левой части тождества (7) стоит рыночный спрос на все продукты и ресурсы, а в правой части — рыночное предложение всех продуктов я ресурсов. Так что вместо буквы v мы можем употребить тоже букву р, приняв ее для обозначения всех цен в нашей системе. При таком взгляде на веши ресурсы уже ничем не отличаются от продуктов — они тоже ведь продаются и покупаются. Поэтому мы объединяем все вместе: m+ n =s, а вместо двух индексов i и j берем один, i и представляем Закон Вальраса в самом общем виде:
(8)
Вальрас включил в перечень товаров не только потребительские блага и факторы производства, но также и деньги. В этом отличие его от Сэя, который, как мы помним, говорил: "Продукты обмениваются на продукты".
Когда Вальрас сформулировал свой закон, возник новый интерес к Закону Сэя. А включив в свое тождество деньги, Вальрас стимулировал исследование Закона Сэя с точки зрения его отношения к деньгам, что позволило выявить неявные допущения в отношении денег (о чем мы говорили в главе 15).
Значение Закона Вальраса, конечно, сказанным не исчерпывается.
Выражение (8) представляет собой фактически систему уравнений типа
p1F1=p1G1;
p2F2=p2G2
. (и т.д.). (9)
Число неизвестных в системе (9) равно числу уравнений. Систему (9) можно решить обычными алгебраическими методами и найти цены, отвечающие условиям равновесия спроса и предложения. Затем эти равновесные цены можно подставить в уравнения типа (2) и получить такие количества продуктов, которые удовлетворяют условиям рыночного равновесия.
Однако дело обстоит не так просто. Если взглянуть на систему (2) я немного подумать о ее решаемости, мы рано или поздно сообразим, что в этой системе одно уравнение не является независимым. Действительно, коль скоро спрос на кукурузу и дрова задан, тем самым уже определен и спрос на виски. Вальрас выразил эту же мысль в такой форме: если удовлетворяются все уравнения, кроме одного, то и оно должно удовлетворяться. Такая же особенность отличает систему уравнений предложения типа (4). Стало быть, системы (2) и (4) содержат в совокупности не 5 независимых уравнений, а на одно меньше. Другими словами, не (m+ n), a (m+ n – 1) независимых уравнений.
С другой стороны, в уравнениях Вальраса присутствует такой интересный вид товара, как деньги. Что деньги — это интересный товар, наверное, согласятся многие. Но в данном случае он интересен тем, что цена его известна заранее, до решения системы уравнений. И равна она 1.