Расчет и проект пункта послеуборочной обработки и хранения зерна на примере хозяйства Красный маякРефераты >> Ботаника и сельское хоз-во >> Расчет и проект пункта послеуборочной обработки и хранения зерна на примере хозяйства Красный маяк
Таким образом, назначение вентилирования зерна может быть самым разнообразным: профилактическое вентилирование; охлаждение зерна; промораживание; ликвидация самосогревания; охлаждение зерна после зерносушилок; сушка зерна; прогрев зерна перед посевом; газация и дегазация зерна и т. д.
В зависимости от назначения устанавливают различные режимы вентилирования, определяемые температурой и относительной влажностью подаваемого воздуха, расходом его на 1 т зерна, высотой насыпи (толщиной зернового слоя), продолжительностью вентилирования и пр. В некоторых случаях это требует применения соответствующих вентиляционных устройств.
Профилактическое вентилирование. Применяют для подавления жизнедеятельности микрофлоры, предотвращения самосогревания зерна, проветривания зерна с амбарным запахом, выравнивания температуры и влажности в зерновой насыпи.
Профилактическое вентилирование призвано предотвратить самосогревание и возможное развитие других нежелательных процессов (плесневение и т.п.). Такое вентилирование проводят периодически, по мере необходимости.
Лучший технологический эффект достигается, если профилактическое вентилирование сопровождается некоторым охлаждением зерна, а также подсушиванием влажного зерна.
Охлаждение зерна. Применяют в тех случаях, когда необходимо повысить его стойкость при хранении. При температуре зерна от 0 до 10°С сильно затормаживаются физиологические и микробиологические процессы. Такое зерно называют охлажденным.Дополнительное охлаждение зерна на вентиляционных установках после зерносушилок применяют тогда, когда охладительные камеры их работают недостаточно эффективно.
Промораживание зерна. Способствует переводу его в состояние анабиоза (замедленной жизнедеятельности) и сокращает зараженность зерновыми вредителями. В практике сушки и вентилирования воздействие отрицательных температур на семена может быть кратковременным (охлаждение просушенных семян при работе зерносушилок в морозную погоду) и длительным при промораживании.
Овчаров приводит следующие данные о морозоустойчивости семян . Кратковременное воздействие (до 30 мин.) даже очень низких температур (—195° С) не действовало губительно на семена пшеницы влажностью 11,5%: семена дружно прорастали и имели всхожесть 90%. Однако повышение влажности или увеличение длительности воздействия низких температур подавляло их жизнеспособность.
Прогрев семян перед посевом (воздушно-тепловая обработка) повышает их энергию прорастания и всхожесть. Об этом свидетельствуют многочисленные исследования. Поэтому весной охлажденное зерно перед посевом целесообразно прогреть.
Семена вентилируют в дневные часы, когда температура воздуха повышается до 15°С и выше. Воздушно-тепловой обогрев повышает полевую всхожесть зерна на 15—18%, а урожай — на 1— 1,5 ц/га.
5. Расчет выхода семян и использование этого показателя для оценки качества работы механизированного тока
Максимально возможное суточное поступление П, т, зерна той или иной культуры на ток определяется как произведение урожайности У, т/га, количества единиц уборочной техники К, шт., и ее среднесуточной производительности С:
П =У * К * С,
На основании нормативов продолжительности уборки и нормативов производительности имеющейся в хозяйстве уборочной техники при различной урожайности той или иной с.-х. культуры, а так же с учетом календарного распределения уборочно–транспортных звеньев по убираемым массивам заполняется таблица максимально возможного в данном хозяйстве суточного поступления зерна на ток (табл. 5), и на её основании строится соответствующий график.
Таблица 5.1.
Суточное поступление различных культур на ток
Культура |
Урожайность, т/га |
Количество уборочных средств, шт. |
Среднесуточная производительность, га |
Суточное поступление зерна, т |
Озимая пшеница |
2,7 |
13 |
12 |
421,2 |
Яровая пшеница |
1,5 |
9 |
17 |
229,5 |
Ячмень |
1,8 |
14 |
17 |
428 |
Просо |
1,7 |
8 |
10 |
136 |
Горчица |
0,5 |
24 |
10 |
120 |
Нут |
1,0 |
16 |
12 |
192 |
При распределении уборочно-транспортных звеньев по культурам необходимо соблюдать условие Ту - расчетная продолжительность уборки культуры, а Т к - критическая продолжительность уборки урожая, превышение которой чревато существенным ростом потерь урожая.
Продолжительность уборки культуры, сутки, определяется по формуле
Ту=Мобщ/Мсут,
Где Мобщ – общее количество зерновой массы данной культуры, т;
Мсут – суточная наработка зерновой массы данной культуры, т/сут.
Ту (Озимая пшеница) =3750/421,2=8,8=9 дней
Ту (Яровая пшеница) =2200/229,5=9,6=10 дней
Ту (Ячмень) =3500/428=8,2=9 дней
Ту (Просо) =800/136=5,9=6 дней
Ту (Горчица) =1200/120=10 дней
Ту (Нут) =850/192=4,4 дней
Табл. 5.1.
6. Расчет потребности емкости специализированных и универсальных хранилищ и контроль за качеством хранящегося зерна
Таблица 6.1.
Технико-экономические показатели складов
Наименование номер типового проекта | Емкость склада, т | Высота насыпи зерна, м | Сменная стоимость, тыс.р | Потребная мощность, кВт | |
Общая | Оборудование | ||||
Семенохранилище, типовой проект 813-119 | 500 1000 1500 2000 | 2,5 2,5 2,5 2,5 | 94,0 119,6 146,6 169,1 | 20,7 22,3 25,4 26,7 | 174,6 182,2 189,4 197,0 |
Семенохранилище, типовой проект 813-137 | 1300 2300 | 2,5 2,5 | 160,1 231,5 | 22,1 28,3 | 184,6 217,6 |
Семенохранилище, типовой проект 511/68 509/68 813-138 |
2000 1000 5000 |
2,5-5,0 2,5-5,0 4,3-6,8 |
36,9 32,3 180,7 |
6,8 6,4 10,8 |
- 33,2 124,3 |