Концепция относительности пространства-времениРефераты >> Естествознание >> Концепция относительности пространства-времени
Для того чтобы обнаружить движение Земли относительно неподвижного эфира, Майкельсон решил измерить время прохождения светового луча по горизонтальному направлению движения Земли и направлению, перпендикулярному к этому движению. Если существует эфир, то время прохождения светового луча по горизонтальному и перпендикулярному направлениям должно быть неодинаковым; но никакой разницы Майкельсон не обнаружил. Тогда для спасения гипотезы об эфире Лоренц предположил, что в горизонтальном направлении происходит сокращение тела в направлении движения.
Полностью отрицательный результат опыта Майкельсона стал для Эйнштейна 18 лет позже решающим экспериментом для доказательства того, что никакого эфира как абсолютной системы отсчета не существует.
4. Общая теория относительности.
В специальной теории относительности все системы отсчета предполагаются инерциальными, то есть покоящимися или движущимися друг относительно друга равномерно и прямолинейно. Что произойдет, если одна из систем будет двигаться ускоренно? По своему опыту мы знаем, что в равномерно движущемся вагоне нам кажется, что движется не наш вагон, а неподвижно стоящий рядом поезд. Это впечатление сразу же исчезнет, как только наш вагон сильно затормозит, и мы ощутим толчок вперед. Если принять теперь за систему отсчета замедленно или ускоренно движущийся вагон, то такая система будет неинерциальной.
Чтобы лучше понять сущность общей теории относительности, рассмотрим пример с падением тела на поверхность Земли. Как мы объясняем обычно такие явления? Мы говорим, что Земля притягивает к себе тело согласно закону всемирного тяготения. Ньютон считал, что силы тяготения действуют мгновенно на расстоянии, и величина их убывает пропорционально квадрату расстояния. Такое предположение оказалось, однако, необоснованным, ибо мгновенные взаимодействия отсутствуют в природе. Всякое взаимодействие передается с определенной конечной скоростью в некотором поле.
Понятие о поле возникло в связи с изучением электромагнитных процессов и было введено в физику М. Фарадеем в виде силовых линий, передающих воздействие электрических или магнитных зарядов. Мы говорим, например, что магнит притягивает к себе железные опилки, движение которых происходит по направлению силовых линий. Аналогичным образом вводится понятие поля тяготения, которое существенно отличается от других физических полей тем, что его действие не зависит от природы и других свойств тел, кроме их массы.
До сих пор мы рассматривали движение тел по отношению к таким системам отсчета, которые находятся в покое или движутся друг относительно друга равномерно и прямолинейно. Такие системы мы назвали инерциальными, или галилеевыми, системами отсчета. Первое название отражает тот факт, что для подобных систем отсчета выполняется закон инерции, второе — свидетельствует, что этот закон был открыт впервые Галилеем и сформулирован в качестве первого закона механики Ньютоном. Теперь мы уже знаем, что относительно всех инерциальных, или галилеевых, систем отсчета законы движения тел описываются одинаково, то есть имеют ту же математическую форму и выражаются теми же уравнениями.
Возникает вопрос: а что произойдет, если вместо инерциальных систем взять другие системы отсчета, например, движущиеся с ускорением? Ответ на него дает общая теория относительности, которая называется так потому, что она обобщает частный, или специальный, принцип относительности, который мы рассматривали выше. Соответственно этому мы должны различать специальную и общую теории относительности.
В специальной теории относительности законы природы считаются верными относительно инерциальных систем отсчета, то есть систем неподвижных или движущихся прямолинейно и равномерно. Но где можно обнаружить такие системы в природе? Первая мысль, которая возникает, попытаться связать такую систему с Землей, но она не совсем подходит для этой цели, ибо находится во вращательном, а не прямолинейном движении. Если поместить такую систему на Солнце, то она будет лучше подходить для этого, но и оно, хотя и медленно, но тоже движется. В конце концов, оказывается, что абсолютную инерциальную систему отсчета обнаружить не удается. Поэтому в теории относительности отказываются от понятия абсолютного движения и признают, что все движения совершаются относительно какой-либо определенной системы отсчета.
Как и при построении классической механики, в создании общей теории относительности помог мысленный эксперимент. А. Эйнштейн в своих работах обращается к воображаемому случаю с падением лифта. Представим себе, что лифт отрывается от троса и приходит в свободное падение. Это падение по-разному описывают внешний и внутренний наблюдатели. Поскольку падение происходит с постоянным ускорением, постольку наблюдатель, находящийся внутри лифта, будет рассматривать свою систему как инерциальную. Поэтому, если он, например, выпустит из своей руки часы и платок, то они не упадут на пол и останутся в покое. Если же он приведет в движение какое-либо тело, то оно будет двигаться равномерно и прямолинейно до тех пор, пока не столкнется со стенками лифта. Ведь лифт находится в инерциальном движении. С другой стороны, внешний наблюдатель замечает, что лифт падает и, значит, находится в ускоренном движении под влиянием силы тяжести. Оба наблюдателя рассуждают вполне последовательно, и каждый вправе отстаивать свою точку зрения. Но различие заключается в том, что они описывают явления и законы, которые управляют этими явлениями, в разных системах отсчета, или координат. Внутренний наблюдатель рассматривает их в инерциальной системе отсчета, а внешний — в неинерциальной, ускоренной, системе.
Если описание явлений и законы природы не должно зависеть от системы координат, то необходимо найти то связывающее звено, которое существует между инерциальными и неинерциальными системами отсчета. Таким звеном как раз и служит сила тяжести, которая с точки зрения внешнего наблюдателя заставляет двигаться лифт ускоренно. Эта сила образует поле тяготения, сходное с электромагнитным полем, но в то же время, отличающееся от него тем, что его действие не зависит от любых свойств и структуры тел, кроме их массы.
Слабые поля тяготения не оказывают существенного влияния на свойства окружающего пространства. Поэтому в них можно пользоваться евклидовой геометрией и специальной теорией относительности. В сильных полях тяготения, как, например, в попе тяготения Солнца, приходится учитывать искривление световых лучей его полем, и поэтому применять новую, неевклидову геометрию и общую теорию относительности. Поскольку в этой теории решающую роль играет именно тяготение, ее называют новой теорией тяготения, чтобы подчеркнуть отличие от старой теории тяготения Ньютона.