Звезды во ВселеннойРефераты >> Авиация и космонавтика >> Звезды во Вселенной
Белые карлики и нейтронные звезды. Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и ее быстрое перемещение по диаграмме Герцшпрунга – Рессела. Размер атмосферы звезды увеличивается еще больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звездного ветра. Судьба центральной части звезды полностью зависит от ее исходной массы: ядро звезды может закончить свою эволюцию как белый карлик, нейтронная звезда (пульсар) или черная дыра.
Подавляющее большинство звезд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится темной и невидимой.
У звезд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества. См. также НЕЙТРОННАЯ ЗВЕЗДА.
Черные дыры. У звезд более массивных, чем предшественники нейтронных звезд, ядра испытывают полный гравитационной коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут ее покинуть, – объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют черными дырами.
Если предшественник черной дыры был членом затменной двойной системы, то и черная дыра будет продолжать обращаться вокруг соседней нормальной звезды. Про этом газ из атмосферы звезды может попадать в окрестность черной дыры и падать на нее. Но прежде чем исчезнуть в области невидимости (под горизонтом событий), он разогреется до высокой температуры и станет источником рентгеновского излучения, которое можно наблюдать с помощью специальных телескопов. Когда нормальная звезда заслоняет черную дыру, рентгеновское излучение должно пропадать.
Несколько затменных двойных с рентгеновскими источниками уже обнаружено; в них подозревают наличие черных дыр. Пример такой системы – объект Лебедь X-1. Спектральный анализ показал, что орбитальный период этой системы 5,6 сут, и с таким же периодом происходят рентгеновские затмения. Почти нет сомнений, что там находится черная дыра. См. также ЧЕРНАЯ ДЫРА.
Продолжительность эволюции звезд. Если отвлечься от некоторых катастрофических эпизодов в жизни звезд, то человеческая жизнь слишком коротка, чтобы заметить эволюционные изменения каждой конкретной звезды. Поэтому об эволюции звезд судят так же, как о росте деревьев в лесу, т.е. одновременно наблюдая множество экземпляров, находящихся в данный момент на разных стадиях эволюции.
Скорость и картина эволюции звезды почти полностью определяются ее массой; некоторое влияние оказывает и химический состав. Звезда может быть физически молодой, но уже эволюционно состарившейся в таком же смысле, как месячный мышонок старше годовалого слоненка. Дело в том, что интенсивность выделения энергии (светимость) звезд очень быстро возрастает с ростом их массы. Поэтому более массивные звезды гораздо быстрее сжигают свое горючее, чем маломассивные.
Яркие массивные звезды верхней части главной последовательности (спектральные классы О, В и А) живут значительно меньше, чем звезды типа Солнца и еще менее массивные члены нижней части главной последовательности. Поэтому родившиеся одновременно с Солнцем звезды классов О, В и А уже давно закончили свою эволюцию, а те, что наблюдаются сейчас (например, в созвездии Ориона), должны были родиться относительно недавно.
В окрестности Солнца встречаются звезды различного физического и эволюционного возраста. Однако в каждом звездном скоплении все его члены имеют практически одинаковый физический возраст. Изучая самые молодые скопления с возрастом ок. 1 млн. лет, мы видим все его звезды на главной последовательности, а некоторые еще только приближающимися к ней. В более старых скоплениях наиболее яркие звезды уже покинули главную последовательность и стали красными гигантами. У наиболее старых скоплений осталась лишь нижняя часть главной последовательности, но зато богато населены звездами ветвь гигантов и следующая за ней горизонтальная ветвь.
Если сравнить между собой диаграммы Герцшпрунга – Рессела различных рассеянных скоплений, то можно легко понять, какое из них старше. Об этом судят по положению точки обрыва главной последовательности, отмечающей вершину ее сохранившейся нижней части. У двойного скопления h и c Персея эта точка лежит значительно выше, чем у скоплений Плеяды и Гиады, следовательно, оно намного моложе их.
Диаграммы Герцшпрунга – Рессела шаровых скоплений указывают на их очень большой возраст, близкий к возрасту самой Галактики. Эти скопления состоят из звезд, сформировавшихся в ту далекую эпоху, когда вещество Галактики почти не содержало тяжелых элементов. Поэтому их эволюция протекает не совсем так, как у современных звезд, хотя в целом соответствует ей.
В заключение укажем, что возраст Солнца около 5 млрд. лет, и в настоящее время оно находится в середине своего эволюционного пути. Но если бы исходная масса Солнца была всего вдвое выше, то его эволюция уже давно закончилась бы, и жизнь на Земле так и не успела бы достигнуть своей вершины в образе человека. См. также АСТРОНОМИЯ И АСТРОФИЗИКА; ГАЛАКТИКИ; ГРАВИТАЦИОННЫЙ КОЛЛАПС; МЕЖЗВЕЗДНОЕ ВЕЩЕСТВО; СОЛНЦЕ.
ЛИТЕРАТУРА
Тейлер Р. Строение и эволюция звезд. М., 1973
Каплан С.А. Физика звезд. М., 1977
Шкловский И.С. Звезды. Их рождение, жизнь и смерть. М., 1984
Масевич А.Г., Тутуков А.В. Эволюция звезд: теория и наблюдения. М., 1988
Бисноватый-Коган Г.С. Физические процессы теории звездной эволюции. М., 1989
Сурдин В.Г., Ламзин С.А. Протозвезды. Где, как и из чего формируются звезды. М., 1992