Звезды во ВселеннойРефераты >> Авиация и космонавтика >> Звезды во Вселенной
Голубой
Антарес +1,16
–4,0
3500
1,83
Красный
Фомальгаут +1,16
+1,9
14
0,10
Белый
Поллукс +1,25
+1,0
45
1,02
Оранжевый
Денеб +1,28
–7,0
60000
0,09
Белый
b Креста +1,36
–4,0
6000
–0,25
Голубой
Регул +1,48
–0,7
120
–0,12
Голубой
Шаула (l Sco) +1,60
–5,0
8000
–0,21
Голубой
Адара (e СМа) +1,64
–3,0
1700
–0,24
Голубой
Беллатрикс +1,97
–4,0
2300
–0,23
Голубой
Кастор +0,9
27
0,03
Белый
Звездные величины. Блеск звезд выражают в особых, исторически сложившихся «звездных величинах». Происхождение этой системы связано с особенностью нашего зрения: если сила источника света изменяется в геометрической прогрессии, то наше ощущение от него – лишь в арифметической. Греческий астроном Гиппарх (до 161 – после 126 до н.э.) разделил все видимые глазом звезды на 6 классов по яркости. Самые яркие он назвал звездами 1-й величины, а самые слабые – 6-й. Позже измерения показали, что поток света от звезд 1-й величины примерно в 100 раз больше, чем от звезд 6-й величины по Гиппарху. Для определенности решили, что различие на 5 звездных величин в точности соответствует отношению потоков света 1:100. Тогда разница блеска на 1 звездную величину соответствует отношению яркостей . Например, звезда 1-й звездной величины в 2,512 раза ярче звезды 2-й величины, которая, в свою очередь, в 2,512 раза ярче звезды 3-й величины, и т.д. Это весьма универсальная шкала; она годится для выражения освещенности, создаваемой на Земле любым источником света.
Для сравнения звезд по их истинной светимости используют «абсолютную звездную величину», которая определяется как видимая звездная величина, которую имела бы данная звезда, если поместить ее на стандартном расстоянии от Земли в 10 пк. Если какая-либо звезда имеет параллакс p и видимую величину m, то ее абсолютную величину M вычисляют по формуле
Звездными величинами можно описывать излучение звезды в различных диапазонах спектра. Например, визуальная величина (mv) выражает блеск звезды в желто-зеленой области спектра, фотографическая (mp) – в голубой, и т.п. Разность между фотографической и визуальной величинами называют «показателем цвета» (color index)
он тесно связан с температурой и спектром звезды.
Размеры звезд. Звезды очень сильно различаются по диаметру: белые карлики бывают размером с земной шар (ок. 13 000 км), а звезды-гиганты превышают размером орбиту Марса (455 млн. км). В среднем размер звезд, видимых на небе невооруженным глазом, близок к диаметру Солнца (1 392 000 км).
За редкими исключениями диаметры звезд не поддаются прямому измерению: даже в крупнейшие телескопы звезды выглядят точками из-за гигантских расстояний до них. Конечно, Солнце является исключением: его угловой диаметр (32ў) легко измерить; еще у нескольких самых крупных и близких звезд с большим трудом удается измерить угловой размер и, зная расстояние до них, определить их линейный диаметр. Эти данные приведены ниже в таблице.
КРУПНЕЙШИЕ ЗВЕЗДЫ НАШЕЙ ГАЛАКТИКИ
Звезда Угловой диаметр (секунды дуги)
Параллакс (секунды дуги)
Линейный диаметр (млн. км)
Бетельгейзе 0,040
0,005
1368
a Геркулеса 0,030
0,004
1110
Антарес 0,040
0,020
306
b Пегаса 0,021
0,020
153
Альдебаран 0,020
0,050
63
Арктур 0,020
0,090
32
В некоторых случаях удается прямо определить линейные диаметры звезд в двойных системах. Если звезды периодически закрывают друг друга, то по продолжительности затмения, измерив по смещению спектральных линий орбитальную скорость звезд, можно вычислить их диаметр.
Для подавляющего большинства звезд диаметры определяют косвенно, на основе законов излучения. Определив по виду спектра температуру звезды, на основе законов физики можно вычислить интенсивность излучения ее поверхности. Зная полную светимость, уже легко вычислить площадь поверхности и диаметр звезды. Полученные таким образом диаметры хорошо согласуются с измеренными непосредственно.
В течение жизни размер звезды сильно меняется. Она начинает свою эволюцию как сжимающееся газовое облако огромного размера, затем длительное время остается в виде нормальной звезды, а в конце своей жизни увеличивается в десятки раз, становясь гигантом, сбрасывает оболочку и превращается в маленький «белый карлик» или совсем крохотную «нейтронную звезду». См. также НЕЙТРОННАЯ ЗВЕЗДА; ПУЛЬСАР.
Звездные населения. В 1944 американский астроном немецкого происхождения В.Бааде предложил разделить звезды на два типа, которые он назвал Населением I и Населением II. К Населению I он отнес молодые звезды и связанные с ними межзвездные газ и пыль, которые наблюдаются в спиральных рукавах галактик и рассеянных скоплениях. Население II состоит из старых звезд, встречающихся в шаровых скоплениях, эллиптических галактиках и центральных областях спиральных галактик. Ярчайшие звезды Населения I – это голубые сверхгиганты, которые раз в 100 ярче, чем ярчайшие звезды Населения II, красные гиганты. У звезд Населения I значительно выше содержание тяжелых элементов. Концепция звездных населений имела большое значение для развития теории эволюции звезд.
Движения звезд. Обычно движение звезды характеризуют с двух точек зрения: как орбитальное движение вокруг центра Галактики и как относительное движение в группе ближайших звезд. Например, Солнце обращается вокруг центра Галактики со скорость ок. 240 км/с, а по отношению к окружающим его звездам движется значительно медленнее, со скоростью ок. 19 км/с.
Основной системой отсчета для измерения движения звезд служит Галактика в целом. Но для земного наблюдателя обычно удобнее использовать систему отсчета, связанную с центром Солнечной системы, фактически – с Солнцем. По отношению к Солнцу ближайшие звезды движутся со скоростями от 10 км/с и выше. Но расстояния до звезд так велики, что фигуры созвездий изменяются лишь за многие тысячелетия. Перемещение звезд впервые обнаружил в 1718 Э.Галлей, сравнивая их положения, точно определенные им в Гринвиче, с теми, которые указал в своем каталоге Птолемей (2 в. н.э.).
Угловое перемещение звезды на небесной сфере по отношению к далеким звездам называют ее «собственным движением» и выражают обычно в угловых секундах за год. Так, собственное движение Арктура 2,3ўў/год, а Сириуса 1,3ўў/год. Наибольшее собственное движение у звезды Барнарда, 10,3ўў/год.
Чтобы вычислить линейную скорость звезды в километрах в секунду, используют формулу T = 4,74 m/p, где T – тангенциальная скорость (т.е. компонента полной скорости, направленная поперек луча зрения), m –собственное движение в секундах дуги за год и p – параллакс.
Лучевая скорость. Скорость звезды вдоль луча зрения, которую называют лучевой скоростью, измеряется по доплеровскому смещению линий в ее спектре с точностью до долей километра в секунду. Смещение линий в красную сторону спектра говорит об удалении звезды от Земли, а в голубую – о приближении. Скорости звезд не так велики, чтобы это привело к изменению цвета звезды, но быстрое движение далеких галактик весьма заметно меняет их цвет. Измерение доплеровского смещения линий – очень тонкая операция. В телескопе одновременно со спектром звезды на ту же пластинку фотографируют спектр лабораторного источника с точно известным положением линий. Затем с помощью измерительной машины, снабженной мощным микроскопом, с точностью до 1 мкм определяется смещение линий (Dl) в спектре звезды относительно тех же линий лабораторного источника с длиной волны l. Лучевая скорость звезды определяется по формуле V = cDl/l, где c – скорость света. Эта формула пригодна для нормальных звездных скоростей, но для быстро движущихся галактик она не подходит. Точность измерения лучевых скоростей звезд не зависит от расстояния до них, а всецело определяется возможностью получать хорошие спектры и точно измерять в них положение линий. Однако точность измерения тангенциальных скоростей звезд зависит не только от аккуратности измерения их собственного движения, но и от их параллакса, т.е. от расстояния до них: чем больше расстояние, тем ниже точность.