Анализ и расчет характеристик среднеорбитальной системы типа ГЛОНАС, NAV-STARРефераты >> Авиация и космонавтика >> Анализ и расчет характеристик среднеорбитальной системы типа ГЛОНАС, NAV-STAR
Детерминант матрицы D:D=-1.144799074*10^-13=-0.0000000000001144799
Решение этих уравнений через главный и частные , , определители представим в виде линейной комбинации результатов измерений на коэффициенты , , , равные отношению соответствующих алгебраических дополнений к :
X==1300
Y==1300
Z==50
D==-2.59055665844*10^-13
где, например,
; ; . и т. д
Каждый исполнитель работы выполняет аналитические выкладки для получения выражений и B с использованием формулы п.1.4.1
, ,.
Необходимо доказать, что: главный определитель системы уравнений
,
и из шестнадцати коэффициентов В три равны нулю, а остальные равны одному из всего семи значений, так что:
При расчете данных выражений использовались значения Н: Н1=Н2=Н3=43; Н4=90
Аналитические выкладки следует привести в приложении к отчету. При защите работы необходимо будет вывести выражение для одного из коэффициентов. Рассчитанные значения коэффициентов поместить в табл.3 с тремя знаками после запятой.
3.3 Оценка влияния погрешностей измерений на определение x, y, z
Понятие геометрического фактора (см. с.83 /1/) облегчает оценку точности системы в предположении одинаковости дисперсий и некоррелированности результатов измерений. Эти требования удовлетворяются из-за одинаковости условий приема сигналов различных ИСЗ.
При некоррелированности погрешностей измерений и одинаковости дисперсий () применимо известное из теории вероятностей правило (см. с.326-327 [1]): дисперсия линейной комбинации равна произведению дисперсии на сумму квадратов коэффициентов. Применительно к решениям системы п.3.2.1 - это правило дает равенства:
Величина Г и называется геометрическим фактором, зависящим лишь от взаимного геометрического расположения ИСЗ и судна.
Рассчитать геометрические факторы с двумя знаками после запятой
(1.11, 1.11, 1.81, ).
Рассчитать геометрический фактор погрешности местоопределения на поверхности Земли и в пространстве :
=2.406039961, =1.578853755.
Рассчитывается погрешность местоопределения судна (на поверхности) в среднеорбитальной спутниковой РНС и по дифференциальной подсистеме - с учетом результатов п.3.1.3 - 3.1.4.
Данные расчета занести в табл.1.
Таблица 1
Система |
ССРНС |
Навстар |
Диф. ССРНС |
sм (м) |
18,32 |
50,08 |
10,93 |
4. Режим определения путевой скорости, путевого угла и поправки к частоте опорного генератора
4.1 Модель фазового измерителя секундных приращений дальности до ИСЗ
Такой измеритель включает два верхних квадратурных канала рис.13.7 [1] и ГУН несущей, который состоит из высокостабильного неуправляемого опорного генератора ОГ и цифрового синтезатора частоты ЦСЧ, управляемого выходным сигналом схемы Костаса. ЦСЧ содержит регистр текущей разности фаз между колебаниями ОГ и принятого сигнала. Одному фазовому циклу соответствует равное длине волны приращение радиального расстояния от судна до ИСЗ. Из-за принципиальной многозначности фазовых измерений отсчет ЦСЧ в начальный момент времени t0 может отличаться от истинной величины измерявшегося в п.3.2.1 расстояния на неизвестное целое число длин волн. Поскольку это число сохранится во всех последующих отсчетах, то секундные изменения радиального расстояния, (как и приращения введенных в п.3.2.1 нормированных величин ) будут определяться однозначно. Это позволяет по системе четырех линейных уравнений п.3.2.1 однозначно рассчитать и секундные приращения, , , входящих в это уравнения X, Y, Z, d.
4.2 Определение секундных приращений координат
Они численно равны соответствующим проекциям вектора путевой скорости. А секундное приращение линейного эквивалента ухода шкалы времени в длинах волн равно разности между номиналами частот опорных генераторов ИСЗ и судна. Поэтому алгоритм определения перечисленных искомых величин сводится (после изменения обозначений по правилу: , , , ) к решению системы линейных уравнений п.3.1 в виде