Анализ и расчет характеристик среднеорбитальной системы типа ГЛОНАС, NAV-STAR
Рефераты >> Авиация и космонавтика >> Анализ и расчет характеристик среднеорбитальной системы типа ГЛОНАС, NAV-STAR

Детерминант матрицы D:D=-1.144799074*10^-13=-0.0000000000001144799

Решение этих уравнений через главный и частные , , определители представим в виде линейной комбинации результатов измерений на коэффициенты , , , равные отношению соответствующих алгебраических дополнений к :

X==1300

Y==1300

Z==50

D==-2.59055665844*10^-13

где, например,

; ; . и т. д

Каждый исполнитель работы выполняет аналитические выкладки для получения выражений и B с использованием формулы п.1.4.1

, ,.

Необходимо доказать, что: главный определитель системы уравнений

,

и из шестнадцати коэффициентов В три равны нулю, а остальные равны одному из всего семи значений, так что:

При расчете данных выражений использовались значения Н: Н1=Н2=Н3=43; Н4=90

Аналитические выкладки следует привести в приложении к отчету. При защите работы необходимо будет вывести выражение для одного из коэффициентов. Рассчитанные значения коэффициентов поместить в табл.3 с тремя знаками после запятой.

3.3 Оценка влияния погрешностей измерений на определение x, y, z

Понятие геометрического фактора (см. с.83 /1/) облегчает оценку точности системы в предположении одинаковости дисперсий и некоррелированности результатов измерений. Эти требования удовлетворяются из-за одинаковости условий приема сигналов различных ИСЗ.

При некоррелированности погрешностей измерений и одинаковости дисперсий () применимо известное из теории вероятностей правило (см. с.326-327 [1]): дисперсия линейной комбинации равна произведению дисперсии на сумму квадратов коэффициентов. Применительно к решениям системы п.3.2.1 - это правило дает равенства:

Величина Г и называется геометрическим фактором, зависящим лишь от взаимного геометрического расположения ИСЗ и судна.

Рассчитать геометрические факторы с двумя знаками после запятой

(1.11, 1.11, 1.81, ).

Рассчитать геометрический фактор погрешности местоопределения на поверхности Земли и в пространстве :

=2.406039961, =1.578853755.

Рассчитывается погрешность местоопределения судна (на поверхности) в среднеорбитальной спутниковой РНС и по дифференциальной подсистеме - с учетом результатов п.3.1.3 - 3.1.4.

Данные расчета занести в табл.1.

Таблица 1

Система

ССРНС

Навстар

Диф. ССРНС

sм (м)

18,32

50,08

10,93

4. Режим определения путевой скорости, путевого угла и поправки к частоте опорного генератора

4.1 Модель фазового измерителя секундных приращений дальности до ИСЗ

Такой измеритель включает два верхних квадратурных канала рис.13.7 [1] и ГУН несущей, который состоит из высокостабильного неуправляемого опорного генератора ОГ и цифрового синтезатора частоты ЦСЧ, управляемого выходным сигналом схемы Костаса. ЦСЧ содержит регистр текущей разности фаз между колебаниями ОГ и принятого сигнала. Одному фазовому циклу соответствует равное длине волны приращение радиального расстояния от судна до ИСЗ. Из-за принципиальной многозначности фазовых измерений отсчет ЦСЧ в начальный момент времени t0 может отличаться от истинной величины измерявшегося в п.3.2.1 расстояния на неизвестное целое число длин волн. Поскольку это число сохранится во всех последующих отсчетах, то секундные изменения радиального расстояния, (как и приращения введенных в п.3.2.1 нормированных величин ) будут определяться однозначно. Это позволяет по системе четырех линейных уравнений п.3.2.1 однозначно рассчитать и секундные приращения, , , входящих в это уравнения X, Y, Z, d.

4.2 Определение секундных приращений координат

Они численно равны соответствующим проекциям вектора путевой скорости. А секундное приращение линейного эквивалента ухода шкалы времени в длинах волн равно разности между номиналами частот опорных генераторов ИСЗ и судна. Поэтому алгоритм определения перечисленных искомых величин сводится (после изменения обозначений по правилу: , , , ) к решению системы линейных уравнений п.3.1 в виде


Страница: