Физика нефтяного пласта
Как известно, (нефть и вода при обычных условиях в коллекторах не смешиваются. Образующиеся на контактах нефти и воды в пористых средах границы раздела приводят к возникновению многочисленных капиллярных эффектов, отрицательно влияющих на процесс фильтрации нефти и воды. Например, как было показано в предыдущих разделах, фильтрация в пористых средах многофазных систем (смесей нефти, воды и газа) приводит к повышенным сопротивлениям. Процесс вытеснения нефти водой может быть приближен к условиям фильтрации однородных систем без ощутимого влияния на движение флюидов многочисленных границ раздела, если между нефтью и водой поместить оторочку мицеллярного раствора (смеси углеводородных жидкостей, воды и поверхностно-активных веществ, растворимых в углеводородах, и стабилизаторов). В качестве стабилизаторов обычно используются спирты (изопропиловый, бутиловый и др.) J Углеводородную часть мицеллярного раствора может составить легкая нефть фракции С5+.
Нефтерастворимыми поверхностно-активными веществами (ПАВ) являются нефтяные сульфонаты, алкиларилсульфонаты, алкилфенолы. При содержании в системе поверхностно-активных веществ концентрации выше критической концентрации мицеллообразования ПАВ находится в растворе в виде сгустков (мицелл), которые способны поглощать жидкости, составляющие их внутреннюю фазу. При значительной концентрации ПАВ последние в процессе перемешивания вместе с нефтью и водой образуют нефтеводяные агрегаты — мицеллы, строение которых зависит от количественного состава компонентов и их свойств. На рис. приведены схемы строения мицелл с водяной и нефтяной основой. У мицеллы с водяной основой внешней фазой является нефть. Молекулы ПАВ полярной частью (кружочки на рис. 8 обращены к воде, а углеводородными цепями — к нефти. Несмотря на содержание в таком мицеллярном растворе до 95 % воды, он хорошо смешивается с нефтью, ибо внешней фазой даже при большой концентрации воды в системе оказывается нефть).
Рис. 8.
Мицеллярные растворы способны растворять жидкости, составляющие их внутреннюю основу (ядро). При этом размеры мицелл возрастают и в некоторый момент наступает обращение фаз — вместо внешней фазы оказывается вода и наоборот.
Внешне мицеллярные растворы представляют собой однородные прозрачные или полупрозрачные жидкости (размеры мицелл 105—106 мм). Считается, что по реологическим свойствам они относятся к ньютоновским жидкостям.
Вязкость мицеллярных растворов с нефтяной внешней фазой вначале возрастает с увеличением содержания воды в системе и может достигать 100 мПа-с при водосодержании до 40—45 %. Дальнейшее увеличение концентрации воды (если она сопровождается инверсией типа раствора) приводит к снижению вязкости.
В зависимости от состава и свойств компонентов мицеллярных растворов закономерности изменения вязкости от водосодержания могут быть другими. Соли, присутствующие в воде, снижают вязкость растворов. Это свойство используется для регулирования их вязкости. Состав солей влияет на устойчивость мицеллярных растворов, что должно быть учтено при выборе ПАВ и других их составляющих. Мицеллярные растворы устойчивы только при определенных концентрациях солей.
Упомянутые свойства мицеллярных растворов способствуют при их нагнетании в пласт значительному повышению эффективности вытеснения нефти из коллектора. На практике оторочки мицеллярных растворов продвигаются по пласту водой, загущенной полимерами и водой. Минимальный объем оторочек для однородных пористых сред составляет 4—5 % от объема пор обрабатываемого участка.
По лабораторным данным, мицеллярные растворы способны вытеснять до 50—60 % нефти, оставшейся в пласте после обычного его заводнения. Благоприятные результаты получены даже при водонасыщенности пород до применения мицеллярных растворов, достигающей 70 % от объема пор. Недостаток этих растворов — их чрезвычайная дороговизна из-за большого расхода ПАВ и других его компонентов. Для получения необходимых свойств мицеллярных растворов доля ПАВ в системе как минимум должна быть 9—15%, спирта 4—5%.
4.5 Термические способы нефтеотдачи пластов
Впервые опыты по тепловому воздействию на пласт в СССР были начаты в 30-е годы А. Б. Шейнманом и К. К. Дуброваем. С тех пор тепловые методы прошли значительный путь теоретических, лабораторных и промысловых исследований.
При нагнетании в пласт горячей воды повышение температуры вызывает понижение вязкости нефти, изменение молекулярно-поверхностных сил, расширение нефти и горных пород, улучшение смачивающих свойств воды. Механизм проявления тепла, однако, более сложен, чем это можно представить из упомянутого перечня тепловых эффектов.
Горячая вода, нагнетаемая в начале процесса в пласт, быстро отдает тепло породе, остывает до пластовой температуры и поэтому между вытесняемой нефтью и. последующими порциями теплоносителя образуется зона остывшей воды. Следовательно, нефть в дальнейшем будет вначале вытесняться холодной водой (пластовой температуры), а затем горячей. Поэтому прирост нефтеотдачи при нагнетании горячей воды будет наблюдаться в основном в водный период эксплуатации пласта.
Движение горячей воды в пласте сопровождается уменьшением фильтрационных сопротивлений в горячей зоне, а в дальнейшем и сопротивлений всего обрабатываемого участка. При этом повышаются темпы отбора нефти. Со временем прогреваются и включаются в разработку малопроницаемые участки, которые были обойдены или слабо промыты холодной водой.
Большой недостаток исследований по изучению тепловых методов воздействия на пласт с целью увеличения нефтеотдачи заключается в использовании в качестве моделей пластов однородных пористых сред. О том, как проходит процесс вытеснения нефти при нагнетании в неоднородный коллектор горячей воды, пока можно высказывать лишь более или менее правдоподобные догадки. В этом случае, вероятно, возможны более сложные зависимости нефтеотдачи от условий нагнетания теплоносителя, чем при обработке теплом однородных пород. (При контакте горячей или теплой воды с нефтенасыщенной породой понижается вязкость нефти, улучшаются условия смачиваемости, возрастают интенсивность и роль процессов капиллярного перераспределения жидкостей.)
Если уменьшение вязкости нефти способствует увеличению нефтеотдачи, то интенсификация капиллярных процессов пропитывания на фронте вытеснения может отрицательно влиять на нефтеотдачу некоторых видов неоднородных пород, т. е. при введении тепла в неоднородную породу в ней могут происходить процессы, оказывающие противоположное влияние на нефтеотдачу. Результат будет зависеть от того, какой из этих процессов воздействует на нефтеотдачу в большей степени.
Рис.9. Схема распределения температуры в пласте при нагнетании в него пара
Зоны: 1— перегретого пара; 2 — насыщенного пара; 3 — горячего конденсата; 4 — остывшего конденсата пород при тепловой обработке следует ожидать при низких температурах теплоносителя в пласте (до 80—85 °С).