Расчет параметров системы наблюдений в методе ОГТ
При однородном группировании , когда все одиночные заряды , входящие в группу , имеют одинаковую массу , относительный уровень случайных помех , возбуждаемых групповым взрывом , уменьшается в √n большая раз (n — число зарядов в группе) по сравнению с их уровнем (по отношению к регулярным волнам) при взрыве одиночного заряда с массой, равной суммарной массе зарядов в группе. Это действие группы называют статистическим эффектом. При групповом взрыве наблюдается также значительное повышение уровня полезного сигнала по отношению к случайным помехам , не зависящим от взрыва.
Группирование взрывов при соответствующем выборе расстояний между источниками в группе и их размещения может быть использовано для ослабления (подавления) регулярных помех типа прямых и поверхностных волн. Для получения указанных эффектов заряды в группах необходимо размещать на расстоянии нескольких метров друг от друга , чтобы образующиеся при взрывах зоны разрушений и остаточных деформации не соприкасались одна с другой.
Необходимо заметить , что увеличение числа зарядов в группе приводит к увеличению объема буровых работ и замедлению процесса производства сейсмических исследований. Иногда при группировании взрывов для уменьшения объема буровых работ уменьшают глубину скважин. Тем не менее , группирование взрывов всегда вызывает удорожание работ. Поэтому его следует применять лишь тогда , когда другие способы и приемы улучшения качества записей прихода упругих волн оказываются неэффективными.
Возбуждение импульсными источниками.
Многочисленный опыт работ с поверхностными импульсными излучателями показывает , что необходимый сейсмический эффект и приемлемые соотношения сигнал/помеха достигаются при накоплении 16-32 воздействий. Это число накоплений эквивалентно взрывам зарядов тротила массой всего 150-300 г. Высокая сейсмическая эффективность излучателей объясняется большим коэффициентом полезного действия слабых источников , что делает перспективным их применение в сейсморазведке , особенно в способе ОГТ , когда на этапе обработки происходит N-кратное суммирование , обеспечивающее дополнительное повышение соотношения сигнал/помеха.
Под действием многократных импульсных нагрузок при оптимальном числе воздействий в одной точке упругие свойства грунта стабилизируются и амплитуды возбуждаемых колебаний остаются практически неизменными. Однако при дальнейшем приложении нагрузок разрушается структура грунта и амплитуды уменьшаются. Чем больше давление на грунт δ , тем при большем числе воздействий Nк амплитуда колебаний достигает максимума и тем меньше пологий участок кривой А=ƒ(n). Число воздействий Nк , при котором начинает уменьшаться амплитуда возбуждаемых колебаний , зависит от структуры, вещественного состава и влажности пород и для большинства реальных грунтов не превышает 5-8. При импульсных нагрузках, развиваемых газодинамическими источниками, особенно велика разница амплитуд колебаний , возбуждаемых первым (А1) и вторым (А2) ударами , величина отношения которых А2/А1 может достигать значений 1,4-1,6. Отличия между величинами А2 и А3 , А3 и А4 и т.д. значительно меньше. Поэтому при использовании наземных источников первое воздействие в заданной точке не суммируется с остальными и служит лишь для предварительного уплотнения грунта.
Перед производственными работами с использованием невзрывных источников на каждой новой площади проводят цикл работ по выбору оптимальных условий возбуждения и регистрации сейсмических волновых полей.
3.3 Условия приема упругих волн.
При импульсном возбуждении всегда стремятся создать в источнике резкий и короткий по времени импульс , достаточный для образования интенсивных волн, отраженных от исследуемых горизонтов. Сильными средствами воздействия на форму и длительность этих импульсов во взрывных и ударных источниках мы не располагаем. Не располагаем мы также высокоэффективными средствами воздействия на отражающие , преломляющие и поглощающие свойства горных пород. Однако сейсморазведка располагает целым арсеналом методических приемов и технических средств , позволяющих в процессе возбуждения и особенно регистрации упругих волн , а также в процессе обработки полученных записей наиболее ярко выделить полезные волны и подавить мешающие их выделению волны-помехи. С этой целью используются различия в направлении прихода волн разного типа к земном поверхности , в направлении смещения частиц среды за фронтами приходящих волн , в частотных спектрах упругих волн, в формах их годографов и т. п.
Упругие волны регистрируются комплектом достаточно сложной аппаратуры, монтируемой в специальных кузовах , устанавливаемых на высоко проходимых транспортных средствах - сейсмических станциях.
Комплект приборов , регистрирующих колебания почвы , вызванные приходом упругих волн в той пли иной точке земной поверхности , называют сейсморегистрирующим (сейсмическим) каналом. В зависимости от числа точек земной поверхности, в которых одновременно регистрируется приход упругих волн, различают 24-, 48-канальные и более сейсмостанции.
Начальным звеном сейсморегистрирующего канала является сейсмоприемник , воспринимающий колебания почвы , обусловленные приходом упругих волн и преобразующий их в электрические напряжения. Так как колебания почвы очень малы , электрические напряжения , возникающие на выходе сейсмоприемника , перед регистрацией усиливаются. С помощью пар проводов напряжения с выхода сейсмоприемников подаются на вход усилителей , смонтированных в сейсмостанции. Для соединения сейсмоприемников с усилителями используется специальный многожильный сейсмический кабель , который обычно называют сейсмической косой.
Сейсмический усилитель представляет собой электронную схему , усиливающую подаваемые на его вход напряжения в десятки тысяч раз. Он может с помощью специальных схем полуавтоматических либо автоматических регуляторов усиления или амплитуд (ПРУ , ПРА , АРУ , АРА) усиливать сигналы. Усилители включают специальные схемы (фильтры) , позволяющие необходимые частотные составляющие сигналов усиливать максимально , а другие — минимально , т. е. осуществлять их частотную фильтрацию.
Напряжения с выхода усилителя поступают на регистратор. Используется несколько способов регистрации сейсмических волн. Ранее наиболее широко использовался оптический способ регистрации волн на фотобумаге. В настоящее время упругие волны регистрируются на магнитной пленке. В том и другом способе перед началом регистрации фотобумага либо магнитная пленка приводятся в движение с помощью лентопротяжных механизмов. При оптическом способе регистрации напряжение с выхода усилителя подается на зеркальный гальванометр , а при магнитном способе - на магнитную головку. Когда на фотобумаге или на магнитной пленке производится непрерывная запись, волнового процесса способ записи называют аналоговым. В настоящее время наибольшее применение получает дискретный (прерывистый) способ записи , который обычно называют цифровым. В этом способе в двоичном цифровом коде регистрируются мгновенные значения амплитуд напряжений на выходе усилителя , через равные интервалы времени ∆t изменяющиеся от 0,001 до 0,004с. Такая операция носит название квантования по времени , а принятую при этом величину ∆t называют шагом квантования. Дискретная цифровая регистрация в двоичном коде дает возможность использовать для обработки сейсмических материалов универсальные ЭВМ. Аналоговые записи могут быть обработаны на ЭВМ после их преобразования в дискретную цифровую форму.