Минералогия
Октаэдр представляет собой совокупность восьми попарно параллельных граней. Если каждая грань октаэдра замещена тремя гранями (триоктаэдр) , то по количеству сторон этих граней различают тригонтриоктаэдр, тетрагонтриоктаэдр и пентагонтриоктаэдр. При замещении грани октаэдра шестью гранями получим гексаоктаэдр, состоящий из 48 граней.
Тетраэдр кубической сингонии состоит из четырёх равносторонних треугольников, замыкающих пространство.
Если каждую грань тетраэдра заменить тремя гранями, то по аналогии с октаэдром получим тригонтритетраэдр и пентагонтритетраэдр.
Ромбододекаэдр представляет собой простую форму, состоящую из 12 граней в виде ромбов.
Пентагондодекаэдр также состоит из 12 граней, но имеющих форму неправильных пятиугольников.
Дидодекаэдр - "удвоенный" додекаэдр, каждая грань которого заменена двумя гранями; состоит из 24 граней.
Определение содержания науки минералогии и связь минералогии с другими науками о земле. Минералогия занимается изучением свойств и состава минералов, выявлением геологических условий и физико-химической обстановки образования минералов, исследованием минералов, как формы концентрации одних и рассеивания других химических элементов, вскрытием механизмов зарождения, роста и разрушения минералов, разработкой минералогических критериев поиска рудного и нерудного сырья.
Являясь наукой о природных химических соединениях кристаллической структуры, минералогия тесно связана с кристаллографией, физикой и химией.
Понятия: минерал, руда, минеральный вид.
Минералами называются однородные по составу и строению кристаллические вещества, образовавшиеся в результате физико-химических процессов и являющиеся составными частями горных пород и руд. С химической точки зрения минерал - более или менее однородное тело, отвечающее определённому составу. Физически каждый минерал также характеризуется более или менее определёнными, присущему ему качествами: твёрдостью, плотностью, магнитностью, оптическими свойствами и др.
К определению понятия "минерал" нужно сделать следующие замечания.
1. К минералам мы условно будем относить не только явно кристаллические вещества, но также некоторые скрытокристаллические и аморфные природные вещества (халцедон, агат, опал и некоторые другие) , которые исстари относятся к царству минералов. Они также твердые вещества, продукты природных процессов, составные части горных пород и руд.
2. К минералам следует относить природные химически и структурно однородные образования, являющиеся составными частями других космических тел - Луны, планет, метеоритов. Так, можно говорить о минеральном составе лунных горных пород, минеральном составе каменных метеоритов и т.д. При этом интересно отметить, что некоторые минералы, известные в метеоритах, не известны на Земле (например, сульфид кальция - ольдгамит CaS или фосфид железа, никеля и кобальта - шрейберзит (Fe, Ni, Co) 3P) .
3. Различные синтетические продукты, близкие по свойствам, составу и структуре к минералам, называются искуственными минералами. Таковы, например, полученные в лабораторных условиях искуственные кварц, корунд, слюда и др.
Распространение минералов в природе чрезвычайно широко. Вся земная кора, все горные породы и месторождения полезных ископаемых состоят из минералов.
Размеры минеральных индивидов могут быть от больших, масса которых несколько тонн (полевой шпат, кварц) , до мельчайших зёрнышек, видимых только в микроскоп. Большинство минералов встречаются именно в виде мелких и мельчайших зёрнышек, образуя зернистую структуру магматических, осадочных и метаморфических пород.
Известно около 2200 минералов, а число их названий с разновидностями более 4000. Последнее объясняется тем, что многие минералы имеют несколько названий (синонимы) . Кроме того, разновидности минералов получают самостоятельные названия благодаря отклонениям от химического состава, цвета и других свойств. Широко распространенных в природе минералов насчитывается около 450 видов, остальные встречаются редко.
Названия минералов даются по характерным физическим свойствам, по химическому составу или по месту, где они были впервые обнаружены. Многие минералы названы в честь учёных открывших или описавших их.
Минералы как полезные ископаемые. Нет данных.
Использование минералогии в геологоразведке. Минералогия позволяет:
1. Определить минералы и минеральные разновидности;
2. Определить химический состав минералов, включая и элементы примеси, находящиеся нередко в ничтожных колличествах;
3. Установить кристаллическую структуру минералов;
4. Изучить условия образования минералов;
5. Изучить возможности практического использования минералов и руд.
Технологическая минералогия. Поисковая минералогия. Гемология. Экологическая (мидицинская) минералогия. Нет данных.
Координационные числа.
Координационным числом данного атома в структуре минерала называется число ближайших от него соседних атомов. Так, в галите координационное число натрия - 6 ((вокруг него расположено по шесть атомов хлора) , координационное число хлора также - 6 (каждый атом хлора соседствует с шестью атомами натрия) .
В идеальных плотнейших упаковках координационное число зависит от соотношения размеров ее атомов: если один вид атомов слагает упаковку, то от размера других атомов зависит то, в какую пустоту (тетраэдрическую или октаэдрическую) они могут поместиться. Размеры пустот зависят от размеров атомов("шаров") , формирующих плотнейшую упаковку, а оптимальное соотношение радиусов этих атомов и радиуса атома в пустоте всегда одно и то же. Для октаэдрической координации оно равно 0.41, для тетраэдрической - 0.22. Также плотно можно разместить атом между тремя, восемью, двенадцатью соседними. Для таких структур возможны координационные числа 3,4,6,8,12.
Идеальные плотнейшие упаковки атомов возможны только в структурах минералов с ненаправленными, т.е. полностью ионными или металлическими химическими связями между атомами. В минералах с ковалентными связями соединение атомов в кристаллическую постройку осуществляется за счет обобществления электронов на орбиталях p, d, f. В самородной сере атомы S объединены в молекулу S8, при этом электроны внешних орбиталей p (у серы их шесть) объединяются так, что у каждого атома оказывается устойчивая восьмиэлектронная внешняя оболочка. Также за счет обобществления электронов внешней орбитали p соединяются атомы углерода в структуре алмаза, благодаря этому каждый атом достраивает свою внешнюю оболочку до 8-электронной, т.е. наиболее устойчивой. Существенно, что форма орбиталей p не шаровая, а более сложная и со строго определенной ориентацией в пространстве направлений, по которому могут связаться соседние атомы. Поэтому в минералах с ковалентной связью координационное число зависит от двух факторов: а) соотношения размеров атомов; б) характера расположения в пространстве валентных орбиталей p, d, f- электронов. Максимально возможное число соседствующих атомов определяется соотношением их размеров, а реальное число может оказаться иным в зависимости от числа и положения валентных орбиталей. Допустимы разные координационные числа - 2,3,4,5,6,7,8,9.