Технико-экономическая оптимизация систем теплогазоснабжения (ТЭО)
Рефераты >> Строительство >> Технико-экономическая оптимизация систем теплогазоснабжения (ТЭО)

Зс/д = Ен· Кс/д + Ис/д (2.3.28)

Подставляя приведенные выражения в исходную целевую функцию получим:

З = Згпр + Зс/д + Зн/д =f(R) (2.3.29)

Для нахождения оптимального радиуса действия ГРП необходимо взять первую производную от затрат и приравнять ее к нулю.

В результате детальной проработки приведенных уравнений получится следующее выражение для оптимального радиуса действия ГРП:

, (2.3.30)

где μ – коэффициент плотности сети низкого давления, 1/м;

q – удельная нагрузка сети низкого давления, м3/ч м.

На основании статистического анализа технико-экономических показателей реальных проектов газоснабжения предложены следующие расчетные уравнения:

, (2.3.31)

, (2.3.32)

где m – плотность населения газоснабжаемой территории, чел/га;

l – удельный часовой расход газа на одного человека, м3/(ч чел);

ΣQ – максимальный часовой расход газа населенным пунктом, м3/ч;

F – площадь газоснабжаемой территории, га.

Положив в уравнении (2.3.30) b=0,55 руб/м см, получим с учетом (2.3.31) и (2.3.32):

(2.3.33)

При известном значении радиуса Ropt оптимальную нагрузку ГРП находим по формуле

(2.3.34)

Оптимальное количество ГПР:

(2.3.35)

Определим оптимальный радиус действия, количество и оптимальную пропускную способность ГПР для систем газоснабжения со следующими исходными данными:

1. Стоимость одного ГПР К’гпр =142500 руб.

2. Нормируемый перепад давлений в уличных газопроводах низкого давления ΔΡн=1200 Па.

3. Плотность населения m=684 ч/га.

4. Удельный головной расход газа на отдельного человека l=0,08 м³/(ч чел).

5. Площадь газоснабжаемой территории F=779 га.

Коэффициент плотности сети низкого давления:

μ=(75+0,3·684)10=280,2·101/м

Оптимальный радиус действия ГРП:

м

Оптимальная пропускная способность 1 ГРП:

м³/ч.

Оптимальное количество ГРП:

шт.

Оптимальный радиус действия 1555,3 м, оптимальная пропускная способность 26472,2 м³/ч и оптимальное количество – 2 штук.

Определение оптимальной мощности и радиуса действия газонаполнительной станции сжиженного газа.

Примем в качестве критерия оптимальности минимум удельных приведенных затрат по комплексу ГНС – потребитель:

Згнс-п=Згнс+За.т.+Зпсг=min , (2.4.1)

где Згнс – удельные приведенные затраты по ГНС, руб/т;

За.т – то же в доставку газа автомобильным транспортом, руб/т;

Зпсг – то же в поселковую систему газоснабжения, руб/т.

Поскольку затраты в поселковые системы газоснабжения в сравниваемых вариантах остаются неизменными, примем в качестве целевой функции переменную часть удельных приведенных затрат:

Згнс-п=Згнс+За.т.=min (2.4.2)

Полагая, что потребители сжиженного газа распределены равномерно по всей территории, прилегающей к ГНС, можно записать:

, (2.4.3)

где q – плотность газопотребления на территории, обслуживаемой станцией, т/(год км2);

N – мощность станции, т/год;

F - площадь газоснабжаемой территории, км2.

Связь между мощностью станции и радиусом ее действия устанавливается уравнением:

, (2.4.4)

где R0 – радиус действия станции, км.

Доставка сжиженного газа с населенные пункты осуществляется:

· по кратчайшему расстоянию от ГНС до потребителя (радиальная дорожная сеть);

· по наиболее протяженному маршруту (прямоугольная дорожная сеть).

dR

a

R

a

R0

Рис. 3. Расчетная схема доставки сжиженного газа потребителям.

При среднем варианте доставки продукта

l≈1,2R (2.4.5)

Удельные приведенные затраты в ГНС определяются по формуле:

, (2.4.6)

где А – стоимостной параметр,, численное значение которого зависит от способа реализации сжиженного газа.

Удельные приведенные затраты в автомобильный транспорт сжиженного газа

, (2.4.7)

где а и в – стоимостные параметры, руб/т, численные значения которых зависят от способа доставки сжиженного газа, дорожных условий и других обстоятельств.

Подставив (2.4.5) в (2.4.7) имеем

(2.4.8)

Прирост реализации сжиженного газа соответствует приращению радиуса газоснабжения на величину dR:

Согласно (2.4.8), переменная часть транспортных затрат составляет 1,2вR. Таким образом, общее приращение затрат по доставке сжиженного газа на всей территории, прилегающей к ГНС:

, (2.4.9)

где R0 – радиус действия газонаполнительной станции, км, или в перерасчете на 1 т реализуемого газа по (2.4.4)

(2.4.10)

Подставив (2.4.10) в (2.4.8), имеем

(2.4.11)

Тогда с учетом (2.4.6) и (2.4.11) целевая функция задачи (2.4.2) примет следующий вид:

(2.4.12)

Выразим мощность станции через радиус ее действия по уравнению (2.4.4):

(2.4.13)


Страница: