Реставрация каменных зданийРефераты >> Строительство >> Реставрация каменных зданий
Число инъекционных точек 2300. Общий погонаж забивки шгьекторов 22 тыс. м. Закачено раствора 5400 мэ. Израсходовано силикат-глыбы {разварка псоизволилась на месте) 1200 т.
Объем закрепленного грунта—15 436 м3. Контроль результатов работ показал монолитность закрепления и его кубиковую прочность, равную 15—25 кгс/см2. Наблюдения, проводимые параллельно работам по силикатизации, показали затухание осадок в процессе работ, а по окончании работ полное их прекращение.
Гниение в насыпных грунтах органических примесей — одна из распространенных причин, вызывающих неравномерные осадки фундаментов. Это в значительной степени объясняется тем, что памятники архитектуры чаще всего строились в сложившихся частях города, где уже имелся значительный культурный слой.
Здание Потешного дворца в Московском Кремле подвергалось, например, незатухающим осадкам в течение почти 300 лет. За это время они составили около 1 м. Причина — наличие в основании здания мощного слоя (10—11 м) насыпного грунта с большим содержанием органических примесей, так как площадка, на которой был сооружен дворец, расположена рядом с царскими конюшнями. Неравномерное распределение органических веществ привело к неравномерным осадкам отдельных частей здания. В состав насыпных грунтов здесь входят пески, супеси, суглинки и перегной. Проектом усиления основания дворца предусмотрено химическое закрепление грунтов, слагающих насыпную толщу. В результате проведения лабораторных работ на грунтах из основания здания в качестве закрепляющего раствора был рекомендован щелочной силиказоль следующего состава: силикат натрия с удельным весом 1,3 г/см3 (3,5 объема) + кремнефтористоводородная кислота с удельным весом 1,1 г/см3 (1 объем) со временем гелеобразования при температуре 14°С30—35 мин.
Предложенная рецептура была проверена в натурных условиях на одном из участков Потешного дворца путем инъекции закрепляющего раствора в грунт. Опытные работы, проводимые трестом Гидроспецстрой и Институтом оснований, предусматривали закрепление всех грунтов, залегающих ниже бетонного пола до глубины 7 м. Инъекция раствора в грунт осуществлялась через инъекторы, забитые в четырех точках, три из которых располагались по треугольнику на расстоянии 120 см друг от друга, четвертая—контрольная—внутри треугольника. Учитывая неравномерное закрепление грунтов, инъекция раствора в грунт производилась короткими полуметровыми заходками. В каждую заходку нагнеталось до 150 л силиказоля со средним расходом 2—3 л/мин. При этом давление на насосе не превышало 2,5 атм. Результаты вскрытия шурфа сечением 1,5×1,5 м и глубиной 5 м показали, что грунт по всей глубине имел прочное закрепление. Предел прочности при сжатии отобранных образцов составил; для песков 15— 20 кгс/см2, для супесей с большим содержанием перегноя 10—15 кгс/см2, для перегноя от 5 до 2,5 кгс/см2.
В 1970 г. в Московском Кремле проводились работы по закреплению грунта в основании церкви Св. Лазаря, для чего был применен новый способ закрепления — газовая силикатизация. Закреплено 100 м3 насыпного грунта. Результаты закрепления оказались положительными: прочность закрепления составила 10—20 кгс/см2.
При строительстве многих зданий, особенно соборов, осуществлялась забивка коротких деревянных свай длиной около 1 м. Это позволяло уплотнить грунт на дне траншеи, затем засыпать ее камнем и залить известковым раствором. При строительстве Успенского собора в Москве в 1475—1479 гг. на мелких песках без перегноя архит. А. Фиорованти под всеми стенами забил деревянные сваи длиной 0,5 саж. Прошло 150 лет, сваи сгнили и стены получили значительные неравномерные осадки. При предварительных работах по закреплению грунтов в основании Успенского собора и расположенной рядом церкви Ризположения исследователи столкнулись с трудностями при инъекции закрепляющих растворов. Дело в том, что технология забивки инъекторов и закачки растворов, существующая до настоящего времени, пригодна при вертикальном или наклонном положении вводимых в грунт инъекторов и для грунтов с сравнительно большой проницаемостью. В практике химического закрепления все чаще приходится сталкиваться в малопроницаемыми грунтами и с условиями производства работ, когда вертикальная или наклонная забивка инъекторов по ряду причин невозможна. Именно такие условия и выявились на указанных объектах. В связи с этим была предложена схема горизонтального задавливания инъекторов в грунт, в основу которой заложен принцип продавливания труб при прокладке ряда трубопроводов и использование инъекторов с манжетным устройством.
Работа по новой схеме сводится к следующему : отрывается шурф, в котором одна из стен крепится целиком, другая (ближняя к фундаменту) имеет несплошное крепление, так как через нее ведутся работы по задавливанию инъекторов. У стенки со сплошным креплением устанавливается вертикальная металлическая плита размером 1,5× ×1>5м, толщиной 2—З см для упора задавливающего механизма, который устанавливается в шурфе. Один конец механизма закреплен на оси и упирается в металлическую плиту. Механизм может свободно разворачиваться под различным углом к оси (в одной плоскости), благодаря чему можно получать веерообразное расположение инъекторов в грунте. Механизм может устанавливаться на любую высоту, создавая таким образом массив закрепленного грунта любых габаритов. Инъектор для горизонтального задавливания изготавливается из металлических толстостенных труб диаметром 56—70 мм и собирается из секций длиной от 1 до 1,5 м. По длине инъектора через каждые 33 или 50 см просверлены по 4 отверстия диаметром 6—8 мм, закрывающиеся манжетами из эластичного материала.
Во многих зданиях, построенных 100 и более лет назад, фундаменты укладывались на лежни. Так, в Ленинграде при строительстве Московского вокзала в 1850-е гг. с целью перераспределения нагрузки на основание под фундаментами были положены лежни диаметром 20—25 см. Долгое время они находились ниже уровня грунтовых вод. В связи с устройством тоннелей метро уровень грунтовых вод понизился, лежни оказались в зоне переменной влажности и начали гнить. На стенах одного из залов вокзала в результате начавшейся осадки появились трещины. Непосредственно под фундаментом здания отсыпана песчаная подушка (1 м) из среднезернистого песка с коэффициентом фильтрации 10—15 м/сут; далее идет насыпной слой грунтов, состоящий из песка с примесью шлаков, битого кирпича и строительного мусора (1—2 м); ниже пылеватые пески (0,8—2 м) с коэффициентом фильтрации 0,2—0,7 м/сут; их подстилают слоистые суглинки.
Для прекращения деформации здания была предложена антисептическая обработка лежней раствором фтористого натрия с последующей их консервацией путем закрепления окружающего песчаного грунта карбамидной смолой. Смолизацией достигалось также упрочнение основания в тех местах, где лежни успели разрушиться. Кроме того, смола ввиду наличия в ее составе свободного формальдегида, в свою очередь, обладает антисептическими свойствами, что также способствует сохранению лежней. Поскольку основная цель работ — омоноличивание деревянных лежней, зона закрепления распространялась лишь на глубину до 1 м. Закачка растворов в грунт производилась в две заходки с помощью инъекторов, забитых с одной внутренней стороны стены под углом 45—60° на расстоянии 1,1 м друг от друга. Вначале в зону расположения лежней нагнетался 3%-ный раствор фтористого натрия. Через 3—4 суток производилась закачка раствора соляной кислоты для предварительной обработки грунта, а затем закрепляющего раствора — смеси карбамидной смолы и соляной кислоты.