Машины постоянного тока параллельного возбужденияРефераты >> Технология >> Машины постоянного тока параллельного возбуждения
Рис. 3. Кривые изменения магнитной индукции в пространстве и э.д.с. проводника якорной обмотки во времени:
а — пространственное распределение индукции под полюсом; б — изменение э.д.с проводника во времени; в — выпрямленное при помощи коллектора напряжение на щетках
e=Bαlν, (2)
где Ва — нормальная составляющая индукции в точке, определяемой углом а, в которой в данный момент времени находится проводник, тл;
I — активная длина проводника, т. е. длина, в которой индуктируется э. д. с., м;
v — скорость перемещения проводника относительно потока, м/сек.
Рис. 4. Распределение потока в четырехполюсной машине:
а — чередование полюсов; б — распределение индукции в воздушном зазоре
При работе машины длина l активного проводника сохраняется неизменной. Поэтому в случае равномерного вращения (v=const) имеем
e≡Bα.(3)
Из выражения (3) следует, что при равномерном вращении якорной обмотки изменение э.д.с е проводника во времени (см. рис. 3, б) в соответствующем масштабе повторяет кривую распределения индукции в воздушном зазоре Вα, (см. рис. 3, а). Анализируя кривую изменения э.д.с. во времени, видим, что в проводниках якорной обмотки индуктируется переменная э.д.с.
В двухполюсной машине за один оборот вращения в проводниках якорной обмотки индуктируется э.д.с., частота которой f=n/60 гц, где n— скорость вращения потока относительно проводника, вычисляемая в оборотах в минуту. Если машина имеет р пар полюсов, то за один оборот ротора под проводником пройдет р пространственных волн магнитного поля. Они наведут э.д.с., частота которой в р раз больше, т. е.
(4)
Выражение (4) определяет частоту э.д.с. многополюсной машины. Оно показывает, что частота э.д.с. пропорциональна числу полюсов машины и скорости ее вращения.
В системе единиц СИ скорость вращения w имеет размерность электрический радиан в секунду. Подставляя в (4) значение w, выраженное через механическую скорость вращения
имеем
(5)
В машинах постоянного тока для выпрямления э.д.с. применяется коллектор, представляющий собой механический преобразователь, выпрямляющий переменный ток якорной обмотки в постоянный ток, проходящий через щетки во внешнюю цепь. Коллектор состоит из соединенных с витками обмотки якоря изолированных между собой пластин, которые, вращаясь вместе с обмоткой якоря, поочередно соприкасаются с неподвижными щетками, соединенными с внешней цепью. Одна из щеток всегда является положительной, другая — отрицательной.
Рис. 5. Выпрямление э.д.с. при помощи коллектора:
1— медные пластины; 2 — виток обмотки якоря; 3 — щетки; 4 — внешняя электрическая цепь
Простейший коллектор имеет две изолированные между собой медные пластины, выполненные в форме полуколец (рис. 5), к которым присоединены концы витка якорной обмотки. Пластины коллектора соприкасаются с неподвижными контактными щетками, связанными с внешней электрической цепью. При работе машины пластины коллектора вращаются вместе с витками якорной обмотки. Щетки устанавливаются таким образом, чтобы в то же время, когда э.д.с. витка меняет знак на обратный, коллекторная пластина перемещалась от щетки одной полярности к щетке другой полярности. В результате этого на щетках возникает пульсирующее напряжение, постоянное по направлению (см. сплошную кривую 1 на рис. 3, в).
Рис. 6. Устройство коллектора:
1 — корпус; 2 — стяжной болт, 3 — нажимное кольцо; 4 — изоляционная прокладка; 5 — «петушок» — часть коллекторной пластины, к которой припаивается конец секции обмотки; 6 — «ласточкин хвост» — часть коллекторной пластины, служащая для ее крепления; 7 — коллекторная пластина
Якорная обмотка состоит из большого числа секций, представляющих собой один или несколько последовательно соединенных витков. Конец каждой секции присоединяется к одной из изолированных коллекторных пластин, образующих коллектор (рис. 6). По мере увеличения числа секций уменьшается пульсация напряжения на щетках (рис. 7). При двадцати коллекторных пластинах разница между максимальной и минимальной величиной напряжения, отнесенная к среднему значению, не превышает 0,65%.
Коллектор является сложным и дорогим устройством, требующим тщательного ухода. Его повреждения нередко служат причиной серьезных аварий. Предпринимались многочисленные попытки создать бесколлекторную машину постоянного тока, однако построить ее принципиально невозможно, так как в многовитковой якорной обмотке, активные стороны которой последовательно проходят под полюсами разной полярности, в любом случае наводится переменная э.д.с., для выпрямления которой необходимо особое устройство.
Рис. 7. Пульсация напряжения на щетках генератора постоянного тока:
а — при двух витках на полюс; б — при большом количестве витков
Поэтому машинами постоянного тока называются электрические машины, у которых преобразование энергии происходит вследствие вращения якорной обмотки относительно неподвижного потока полюсов, а выпрямление тока в постоянный осуществляется коллектором (или иным выпрямителем, вращающимся вместе с якорем).
Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станов, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей. Генераторы постоянного тока применяются главным образом для питания радиостанций, двигателей постоянного тока, зарядки аккумуляторных батарей, сварки и электрохимических низковольтных установок.
Принцип действия двигателя постоянного тока с параллельным возбуждением.
Естественные скоростная и механическая характеристики.
Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.
Скоростная и механическая характеристики двигателя определяются равенствами (6) и (7) при U = const и iB = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.