Литография высокого разрешения в технологии полупроводниковРефераты >> Технология >> Литография высокого разрешения в технологии полупроводников
Рис. 3. Частично когерентное освещение и результирующее распределение интенсивности. Дифракционные порядки рассеянного на объекте света увеличиваются в размере.
Техническое определение разрешающей способности объектива исходит из возможности объектива разрешать последовательность одинаковых прозрачных и непрозрачных полос (дифракционную решетку). Модуляционная передаточная функция (МПФ) выражает связь между объектом М1 и изображением М2:
МПФ=М1 / М2=( Макс - Мин) /
( Макс+Мин ). (5)
Коль скоро МПФ объектива определена, то могут быть сделаны предположения относительно размера функции рассеяния точки (диска Эйри),
контроля ширины линии и чувствительности к условиям экспозиции. Модуляция в 60% соответствует Iмакс=80% и Iмин=20% интенсивности света, пропущенного дифракционными элементами объектива (рис.4). При минимальной МПФ »0.60 допускается 20%-ое недоэкспонирование резиста. МПФ проекционной системы, имеющий дифракционные ограничения и некогерентный источник, идентично преобразованию Фурье круглого входного зрачка объектива:
МПФ= 2 / p [ ( f / 2 fc - f / p fc )(1 - ( f / 2 fc )2 )1/2] . (6)
где fc - (когерентная) пространственная частота отсечки:
fc=[М / ( 1 + M ) ] 1 / l ( tg arcsin NA), (7)
где М - увеличение системы, l - длина световой волны.
Рис. 4. Модуляционная передаточная функция.
Толщина резиста учитывается посредством усреднения МПФ системы в фокусе на поверхности резиста (t=0) и вне фокуса на дне резиста (t). Дефокусировка рассматривается как аберрация. Дефокусированная МПФ есть произведение сфокусированной МПФ и фурье-преобразования диска Эйри:
F( f )=( 1 / p R f ) J ( 2 p R f ), (8)
где R- радиус диска, J- функция Бесселя первого порядка. Таким
образом, для резиста заданной толщины t (рис.5):
МПФt=[(1+F)/2]МПФ0. (9)
МПФ оптических приборов резко спадает на пространственной частоте, которая ограничивает диапазон пространственных частот изображаемого предмета. При увеличении NA и уменьшении l улучшается качество передачи изображения (рис. 6). Расфокусировка может рассматриваться как аберрация. Таким образом, использование тонких пленок в многослойном резисте или резисте с поверхностным переносом изображения позволяет увеличить разрешение, особенно в случае близко расположенных линий или элементов.
Рис. 5. МПФ при толщине резиста: 0.4 (А), 0.8 (В) и 1.2мкм (С).
Рис. 6. Зависимость МПФ от числовой апертуры.
При моделировании реальных резистных профилей неравномерность распределения интенсивности по краю пучка, взаимодействие проявителя с резистом (контраст) и МПФоб. оптической системы учитываются в следующем дифференциальном выражении для изменения ширины линии:
dy/dx=(¶y/¶E)(¶E/¶x), (10)
где E - поглощенная резистом энергия. В случае слабопоглащающего резиста и слабо отражающей подложки первый сомножитель зависит от свойств конкретного резиста и процесса его обработки, а второй - только от свойств оптической системы. Величина ¶E/¶x характеризует распределение интенсивности в изображении и зависит от длины волны экспонирования l, числовой апертуры NA, отклонения (Ùz) положения плоскости резиста от фокальной плоскости и однородности освещения:
¶E/¶x@(2NA/l)[1-k(Dz(NA)2/l)]2. (11)
Параметр k равен единице или слегка отличается от нее для различных степеней частичной когерентности освещения. Контраст позитивного резиста определяется из выражения
g=[lg(E0/ E1)]-1, (12)
где E1 - энергия экспозиции, ниже которой не происходит удаления резиста в проявителе, E0 - энергия экспозиции, при которой резист полностью удаляется при проявлении. Обычно E1 не зависит от толщины резиста t, в то время как значение E0 на глубине t зависит от поглощения в слое резиста толщиной t (E0»10-at). С учетом этих предположений
g=(b+at)-1, (13)
где b - постоянная, a - коэффициент поглощения резиста. При a=0.4 поглощение в резистной пленке однородно, а g@2.5. Сомножитель, зависящий от процесса обработки резиста, в этом случае равен
¶y/¶E=g/ E0. (14)
Изменение профиля резиста в определенных выше параметрах описывается следующим образом:
¶y/¶x=[NA/(l(b+at) E0)][1-k(Dz(NA)2/l)]2. (15)
Рис. 7. Влияние длины волны экспонирующего излу-
чения на разрешение для сканера с отражательной
оптикой : когерентность 75% , оптическая сила
объектива F/3.
Из (рис.7) видно, что использование высококонтрастных резистов с низким поглощением допускает больший произвол в выборе энергии экспозиции и большие вариации во времени интенсивности выходного излучения. Кроме того, моделирование двух объективов с разными NA дает более высокий краевой градиент и большие допуски на процесс проявления для систем с большей NA. Нерастворимость негативных резистов убывает с глубиной, поэтому их обычно переэкспонируют для обеспечения достаточной адгезии подложки.
Контактная печать и печать с зазором.
В принципе сколь угодно высокое разрешение может быть получено при физическом контакте шаблона и подложки, а также методом прямого молекулярного осаждения. Однако на практике молекулярный контакт трудно осуществить, а шаблон после десятка проходов при совмещении и печати повреждается. Перемещения и шаблона, и пластины в процессе совмещения вызывают ошибки оператора и ограничивают точность совмещения примерно до ±1 мкм. На ранних этапах развития литографии контактная печать служила основным методом для получения изображений с размерами 3-10 мкм. Поскольку для жидкостного травления важен не профиль изображения в резисте, а его ширина, уход размеров в пределах ±1 мкм при жидкостном проявлении совместим с отклонениями ±1 мкм при печати.
МПФ контактной печати очень высока (>0.8), и при использовании соответствующего контактного шаблона или двухслойных резистов могут быть получены изображения размером вплоть до 0.1 мкм. При использовании ДУФ-излучения метод печати с зазором позволяет получать в ПММА рисунки с шириной лини 1 мкм. Если зазор Z между шаблоном и пластиной превышает френелевский предел (±5%-ный допуск для интенсивности и 20%-ный допуск для ширины линии), предельное разрешение W составляет 1-2 мкм для зазора 5-10 мкм:
¾¾¾¾¾¾¾
W@Ö0.7 l Z . (16)
При дальнейшем увеличении зазора в изображении появляются вторые и третьи дифракционные порядки и результирующий профиль оказывается сужающимся книзу.
Близко расположенные линии при контактной печати или печати с зазором расплываются из-за конструктивной интерференции между волнами, дифрагировавшими на соответствующих отверстиях. Однако если на одно из соседних отверстий шаблона нанесено покрытие, изменяющее фазу проходящего через него излучения на 1800, то при толщине этого покрытия