Сварочные работы в строительстве
Рефераты >> Технология >> Сварочные работы в строительстве

б) закрытой дугой, когда место горения ее закрыто порошкообразным флюсом, плавящимся теплом дуги и образующим шлак; дуга горит при этом в пространстве, изолированном слоем шлака и нерасплавленного флюса (в газовом пузыре). Этот метод защиты характерен для механизированной сварки – автоматической и полуавтоматической под слоем флюса.

в) дугой, защищенной от воздуха специальной газовой защитой – углекислым газом, аргоном или гелием. Этот способ относится к способам сварки в среде защитного газа.

Рис. 1.10. Сварка плавящимся электродом:

1 – сварочная дуга; 2 – электрод; 3 – свариваемое изделие; 4 – жидкий металл

3) Атомноводородная сварка. При вдувании в дугу между неплавящимся графитовым или вольфрамовым электродами струи водорода последний защищает электроды и расплавленный металл от действия воздуха и является переносчиком тепла из дуги на изделие.

При высокой температуре молекулярный водород распадается на атомы (диссоциирует) и забирает большое количество тепла. (103800 кал/моль). Попадая в область низких температур, атомы снова объединяются в молекулы, выделяя забранное тепло.

При вдувании в дугу неплавящегося или плавящегося электрода специального газа получим разные способы сварки в среде защитных газов. Применяют различные газы: активные, взаимодействующие с металлом при сварке (H2;CO2) или инертные, практически не реагирующие с металлом (аргон, гелий). Так, например, аргоно- и гелиедуговая сварка широко применяются по схеме неплавящегося или плавящегося электрода при выполнении сварных соединений из ряда металлов и сплавов (алюминия, титана и сплавов специальных сталей и никелевых сплавов).

Сварка плавящимся электродом в углекислом газе широко применяется при изготовлении сварных соединений из углеродистых и легированных сталей. Разновидность сварки в среде защитных газов – сварка в контролируемой атмосфере.

4) Электрошлаковая сварка. Если под дугой определенной мощности расплавить достаточно большое количество токопроводящего шлака, то совместным действием шунтирования тока дуги и механическим воздействием веса столба шлака газовый пузырь у дуги может быть исключен. Тогда дуга погаснет, и весь ток от электрода будет поступать на свариваемое изделие вследствие электропроводности расплавленного шлака. В результате тепловыделения в шлаке, обусловленного прохождением тока, расплавляются электрод и кромки свариваемых деталей, образуя металлическую ванну. При вертикальном расположении выполняемого шва (нормальное положение сварки) для предотвращения вытекания расплавленного металла и шлака применяют специальные медные водоохлаждаемые формирующие устройства, механически перемещаемые по поверхности свариваемых деталей со скоростью выполнения шва. По мере удаления источника тепла снизу в результате кристаллизации образуется сварной шов. Этот способ применяют для сварки деталей больших толщин (практически любых) за один проход.

5) Электроннолучевая сварка. Способ основан на использовании для нагрева и расплавления металла энергии пучка быстро движущихся электронов электронного луча.

Испускаемые излучателем – катодом – электроны разгоняются действием электрического поля высокой напряженности до больших скоростей, сравнимых со скоростью света, и фокусируются в тонкий луч, направляемый на изделие, являющееся анодом. Процесс происходит в вакууме не ниже 10-4мм рт.ст. Встречаясь с поверхностью анода, электроны отдают свою энергию в изделие в виде тепла.

2. Сварочная дуга

2.1. Электрические и тепловые процессы при сварке

2.1.1. Общие требования к сварочным источникам тепла

В большинстве случаев сварка выполняется с местным нагревом свариваемых деталей до температуры, определяемой свойствами их материалов и способов сварки. При сварке плавлением температура в месте сварки (Tм) значительно больше температуры плавления металла (Тпл).

Для сварочного нагрева может быть использовано превращение различных видов энергии в тепловую: электрической, химической, механической, лучистой, атомной и др. Наиболее широко применяют источники тепла, основанные на превращении энергии электрического тока в тепло. Это дает следующие преимущества : чистота процесса, возможность точно регулировать нагрев, создавать различные тепловые мощности, получать высокие температуры, необходимые для сварки. Этот источник тепла и самый экономичный.

Электрические источники тепла разнообразны по своей природе и принципу действия. Наиболее важные их них:

1) Электрический дуговой разряд или электрическая дуга;

2) Плазменная струя;

3) Джоулево тепло, выделяющееся в проводниках при протекании через них тока;

4) Индукционные токи, возникающие в металле при воздействии переменного магнитного поля;

5) Электронный луч, бомбардирующий нагреваемое тело электронами.

В химических источниках тепла используют экзотермические химические реакции, идущие со значительным выделением тепла. К ним относятся :

1) сжигание газов, жидкостей иди твердых горючих в смеси с кислородом или воздухом;

2) сжигание основного металла в кислороде;

3)термитные реакции;

4) обменные реакции различных химических соединений с основным металлом.

Сварочные источники тепла должны обладать: 1) большой тепловой мощностью; 2) высокой концентрацией тепла; 3) значительной эффективностью; 4) экономичностью. Кроме того, они должны быть удобными в работе.

Тепловая мощность источника q – полное количество тепла, выделяемого им в единицу времени – (кал/сек).

Часть тепла бесполезно идет на нагрев атмосферы, инструмента, оборудования и т.п., другая часть эффективно расходуется на нагрев деталей. Количество тепла, сообщаемое источником нагреваемой детали в единицу времени, называется эффективной мощностью источника тепла – qu (кал/сек). Важной характеристикой источника тепла является эффективный КПД – , представляющий отношение эффективной мощности к полной тепловой мощности: или . Воздействие источника тепла на нагреваемый металл оценивается интенсивностью источника, определяющей удельную тепловую мощность.

2.1.2. Электрические и тепловые свойства дуги

Электрические свойства дуги. Сварочная дуга представляет собой длительный самостоятельный разряд электричества в атмосфере газов и паров металла между двумя электродами, проводящими большой ток - (5-4000) А - при относительно низком напряжении – (10-60)В.

В обычных условиях газы не являются проводником, но при наличии заряженных частиц, электронов и ионов становятся электропроводными.

Включенные в цепь два электрода при соприкосновении дают ток короткого замыкания. При этом они сильно нагреваются и выделяют тепло. Металл катода сильно накаляясь, приобретает способность излучать свободные электроны в пространство - термоэлектронная и автоэлектронная эмиссия (кинетическая энергия электронов становится больше энергии, необходимой для преодоления электростатического притяжения электрода) (рис.2.1.а).


Страница: