Теория РезанияРефераты >> Технология >> Теория Резания
Практическое занятие №5
Расчет режима резания при фрезеровании
Цель работы: Изучить методику назначения режима резания по таблицам нормативов. Ознакомиться и приобрести навыки работы с нормативами.
ОБЩИЕ СВЕДЕНИЯ
Фрезерование – один из самых производительных методов обработки. Главное движение (движение резания) при фрезеровании – вращательное; его совершает фреза, движение подачи обычно прямолинейное, его совершает фреза. Фрезерованием можно получить деталь точностью по 6-12 квалитету шероховатостью до Ra=0,8 мкм. Фрезерование осуществляется при помощи многозубого инструмента – фрезы. Фрезы по виду различают: цилиндрические, торцевые, дисковые, прорезные и отрезные, концевые, фасонные; по конструкции – цельные, составные и сборные.
При торцевом фрезеровании (обработка торцевой фрезой) диаметр фрезы D должен быть больше ширины фрезерования В, т.е. D=(1,25¸1,5)В.
Для обеспечения производительных режимов работы необходимо применять смещенную схему фрезерования (есть симметричная схема), для чего ось заготовки смещается относительно оси фрезы.
При цилиндрическом фрезеровании различают встречное фрезерование, – когда вектор скорости (направление вращения фрезы) направлен навстречу направлению подачи; и попутное фрезерование, когда вектор скорости и направление подачи направлены в одну сторону. Встречное фрезерование применяют для черновой обработки заготовок с литейной коркой, с большими припусками. Попутное фрезерование применяют для чистовой обработки нежестких, предварительно обработанных заготовок с незначительными припусками.
Глубина резания (фрезерования) t во всех видах фрезерования, за исключением торцевого фрезерования и фрезерования шпонок, представляет собой размер слоя заготовки срезаемой при фрезеровании, измеряемый перпендикулярно оси фрезы. При торцевом фрезеровании и фрезеровании шпонок шпоночными фрезами – измеряют в направлении параллельном оси фрезы.
При фрезеровании различают подачу на один зуб Sz подачу на один оборот фрезы S и минутную подачу Sм мм/мин, которые находятся в следующем соотношении:
Sм= S×n= Sz×z×n
Где n – частота вращения фрезы, об/мин;
z – число зубьев фрезы.
При черновом фрезеровании назначают подачу на зуб; при чистовом фрезеровании – подачу на один оборот фрезы.
Скорость резания – окружная скорость фрезы, определяется режущими свойствами инструмента. Ее можно рассчитать по эмпирической формуле [2] , [3], или выбрать по таблицам нормативов [4], [7].
Пример решения задачи.
На вертикально-фрезерном станке 6Р12 производится торцевое фрезерование плоской поверхности шириной В=80 мм, длиной l=400 мм, припуск на обработку h=1,8 мм. Обрабатываемый материал серый чугун СЧ30, НВ220. Заготовка предварительно обработана. Обработка окончательная, параметр шероховатости обработанной поверхности Ra=3,2 мкм. Необходимо: выбрать режущий инструмент , назначить режим резания с использованием таблиц нормативов, определить основное (технологическое) время.
Решение
Рис. 3
1. Выбор инструмента.
Для фрезерования на вертикально-фрезерном станке заготовки из чугуна выбираем торцевую фрезу с пластинками из твердого сплава ВК6 [2] или [3], диаметром D=(1,25¸1,5)×В=(1,25¸1,5)×80=100¸120 мм. Принимаем D=100 мм; z=10, ГОСТ 9473-71 [2] или [3].
Геометрические параметры фрезы: j=60°, a=12°, g=10°, l=20°, j1=5°.
Схема установки фрезы – смещенная.
2. Режим резания.
2.1 Глубина резания.
Заданный припуск на чистовую обработку срезают за один проход, тогда
t=h=1,8 мм
2.2 Назначение подачи.
Для получения шероховатости Ra=6,3 мкм подача на оборот S0=1,0¸0,7 мм/об [4].
Тогда подача на зуб фрезы
мм/зуб.
2.3 Период стойкости фрезы.
Для фрез торцевых диаметром до 110 мм с пластинками из твердого сплава применяют период стойкости
Т=180 мин [4],
2.4 Скорость резания , допускаемая режущими свойствами инструмента.
Для обработки серого чугуна фрезой диаметром до 110 мм, глубина резания t до 3,5 мм, подаче до 0,1 мм/зуб.
V=203 м/мин [4],
С учетом поправочных коэффициентов Kmv=1; Knv=1; при ; КБV=1; Kjv=1 [4],
V=V× Kmv× Knv× КБV× Kj=203×1=203 м/мин.
Частота вращения шпинделя, соответствующая найденной скорости резания
об/мин.
Корректируем по паспорту станка
n=630 об/мин.
Действительная скорость резания
м/мин.
2.5 Минутная подача Sм=Sz×z×n=0,1×10×630=630 мм/мин. Это совпадает с паспортными данными станка.
3. Мощность, затрачиваемая на резание.
При фрезеровании чугуна с твердостью до НВ229, ширине фрезерования до 85 мм, глубине резания до 1,8 мм, подаче на зуб до 0,13 мм/зуб, минутной подаче до 660 мм/мин
Np=3,8 кВт [4],
3.1 Проверка достаточности мощности станка
Мощность на шпинделе станка Nшп=Nд×h
Nд=7,5 кВт; h=0,8 (по паспорту станка)
Nшп=7,5×0,8=6 кВт.
Так как Nшп=6 кВт >Np=3,8 кВт, то обработка возможна.
4. Основное время
, мкм
где L=l+l1.
Для торцового фрезерования фрезой диаметром 100 мм, ширине фрезерования 80 мм
l1=23 мм [4],
мин.
Задание на практическое занятие №5
Выполнить расчет режима резания по таблицам нормативов по заданному варианту.
Исходные данные приведены в таблице 5.
Порядок работы аналогичен предыдущим.
Таблица 5
№ |
Вид заготовки и ее характеристика |
В, мм |
l, мм |
h, мм |
Вид обработки и параметр шероховатости, мкм |
Модель станка |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
1 |
Серый чугун СЧ30, НВ200 |
100 |
600 |
5 |
Торцовое фрезерование, Ra=12,5 |
6Р12 |
2 |
Серый чугун СЧ20, НВ210 |
150 |
500 |
4 |
Торцовое фрезерование, Ra=1,6 |
6Р12 |
3 |
Сталь 38ХА, sв=680 Мпа |
80 |
400 |
6 |
Торцовое фрезерование, Ra=12,5 |
6Р12 |
4 |
Сталь 35, sв=360 Мпа |
90 |
480 |
3,5 |
Торцовое фрезерование, Ra=1,6 |
6Р12 |
5 |
Серый чугун СЧ15, НВ170 |
50 |
300 |
3,5 |
Цилиндрическое фрезерование, Ra=3,2 |
6Р82Г |
6 |
Серый чугун СЧ10, НВ160 |
80 |
250 |
1,5 |
Цилиндрическое фрезерование, Ra=3,2 |
6Р82Г |
7 |
Сталь 40ХН, sв=700 Мпа |
70 |
320 |
4 |
Цилиндрическое фрезерование, Ra=12,5 |
6Р82Г |
8 |
Сталь Ст3, sв=600 Мпа |
85 |
600 |
1,5 |
Цилиндрическое фрезерование, Ra=3,2 |
6Р82Г |
9 |
Сталь 40Х, sв=750 Мпа |
10 |
100 |
5 |
Фрезеровать паз, Ra=6,3 |
6Р12 |
10 |
Сталь Ст5, sв=600 Мпа |
12 |
80 |
8 |
Фрезеровать паз ,Ra=6,3 |
6Р12 |
11 |
Серый чугун СЧ20, НВ180 |
20 |
120 |
10 |
Фрезеровать паз ,Ra=6,3 |
6Р12 |
12 |
Серый чугун СЧ20, НВ200 |
15 |
75 |
8 |
Фрезеровать паз ,Ra=6,3 |
6Р82Г |
13 |
Сталь 20Х, sв=580 Мпа |
8 |
110 |
8 |
Фрезеровать паз ,Ra=6,3 |
6Р82Г |
14 |
Сталь 50, sв=750 Мпа |
12 |
120 |
6 |
Фрезеровать паз ,Ra=6,3 |
6Р82Г |
15 |
Бронза Бр АЖН 10-4 НВ170 |
100 |
300 |
4 |
Торцовое фрезерование, Ra=12,5 |
6Р12 |
16 |
Латунь ЛМцЖ 52-4-1, НВ220 |
60 |
180 |
1,5 |
Торцовое фрезерование, Ra=1,6 |
6Р12 |
17 |
Серый чугун СЧ30, НВ220 |
180 |
200 |
4,5 |
Торцовое фрезерование, Ra=12,5 |
6Р12 |
18 |
Серый чугун СЧ20, НВ220 |
110 |
280 |
2,5 |
Торцовое фрезерование, Ra=3,2 |
6Р12 |
19 |
Сталь 30ХНЗА, sв=800 Мпа |
80 |
320 |
5 |
Цилиндрическое фрезерование, Ra=12,5 |
6Р82Г |
20 |
Сталь 30ХН, sв=780 МПа |
115 |
300 |
3 |
Цилиндрическое фрезерование, Ra=3,2 |
6Р82Г |
21 |
Сталь 45, sв=650 МПа |
40 |
280 |
1,8 |
Цилиндрическое фрезерование, Ra=1,6 |
6Р82Г |
22 |
Сталь 20, sв=500 МПа |
35 |
400 |
3,5 |
Цилиндрическое фрезерование, Ra=6,3 |
6Р82Г |