Лазерная резка, расчет зануления кабельной сети и освещенности сборочного мест блока
Рефераты >> Технология >> Лазерная резка, расчет зануления кабельной сети и освещенности сборочного мест блока

Распространение лазерного излучения в канале реза. При резке материалов лазерным излучением необходимо, чтобы луч проник в вещество как можно глубже. При этом интенсивность излучения должна быть весьма высокой, в связи с этим необходимо добиться минимального размера светового пятна на поверхности мишени. Радиус светового пятна в фокальной плоскости луча rл = l/y, ( где y - угол расходимости луча, l - длинна волны излучения ), т.е. обратно пропорционален углу фокусировки луча . Поэтому, необходимо работать с острофокусным излучением. Такое излучение пройдя фокальную плоскость ( обычно совпадающую с плоскостью поверхности образца ), расфокусируется уже на малой глубине L=l/y2 и будет попадать на боковые стенки канала. Если a - коэффициент поглощения мал, то большая часть света будет отражаться от стенок и попадать на дно канала.

Относительно просто распределение света в канале можно рассчитать в приближении геометрической оптики. Элементарный луч света, многократно отражаясь от стенок , либо частично отражается , если канал реза неглубокий, либо полностью поглощается, если канал реза глубокий.

Процессы распространения теплоты в зонах прилегающих к источнику, могут быть описаны только с учетом влияния характера распределения плотности мощности в пятне лазерного излучения.

Наиболее эффективными параметрами фокусировки обладает нормальное (Гауссово) распределение плотности мощности Е(r) сфокусированного лазерного излучения, широко распространенного в промышленных технологических лазерах.

Рис.1.6 Нормальное распределение плотности мощности в пятне лазерного излучения.

1 - лазерное излу чение;

2 - обрабатываемая деталь.

Под воздействием такого излучения на поверхности мишени возникает тепловой источник нагрева с таким же нормальным распределением плотности мощности в пятне лазерного излучения (рис.1.1), q(r) =qm·e k r ; где qm =aэф Еm- максимальная плотность в центре пятна нагрева ; k -коэффициент сосредоточенности, характеризующий форму кривой нормального распределения ; Еm - максимальная плотность мощности лазерного излучения по оси; r - радиальное расстояние данной точки от центра.

За радиус светового пятна rл обычно принимают радиус пятна нагрева, на котором q = 0,05·qm . Излучение удобно рассматривать в виде потока фотонов. На дне разрезаемого участка вследствии дифракции элементарный луч расплывается на ширину lh/d. Для расчета траектории луча необходимо, чтобы эта ширина, была меньше ширины канала d. Отсюда вытекает условие применимости приближения геометрической оптики: d2 /lh >> 1.

Это неравенство можно переписать , введя понятие коэффициента формы канала h/d: d/l >> h/d. На практике h/d лежит в пределах 5-10, т.е. при l = 10,6 мкм для применимости теории геометрической оптики необходимо, чтобы ширина реза канала реза d > 0,1 мм.

Исходя из приближений геометрической оптики сфокусированное излучение можно представить в виде совокупности N лучей. Каждому лучу на входе в канал соответствовала мощность P/N, где P - мощность лазера. При численных расчетах [4], если мощность луча после очередного отражения была меньше 10-4 начальной, то его исключали.

Рис. 1.7 Зависимость эффективного коэффициента поглощения излу ченияaэф СО 2 - лазера со стальной мишенью от глубины реза a = 0,1. Для случая круговой поляризации.

С помощью такой методики была рассчитана зависимость эффективного поглощения µэф от глубины реза aэф = ( P- Pотр )/ P ( рис.1.7 ). Конкретные расчеты [4] проводились для стали, коэффициент отражения поверхности a = 0,1. Полагалось, что лазер генерирует излучение с круговой поляризацией, электрический вектор которого вращается относительно канала реза.

1.3 Закономерности лазерной резки металлов непрерывным излучением.

Параметры и показатели процесса лазерной резки . Для процесса лазерной резки металлов можно выделить основные факторы, определяющие производительность и качественные показатели процесса. Среди них основными являются : плотность мощности лазерного излучения, скорость резки, давление и состав поддуваемого газа, поглощательная способность поверхности материалов , вид и свойства разрезаемых материалов . Плотность подводимой в зону обработки мощности зависит , в свою очередь , от мощности лазерного излучения , его модового состава , поляризации и условий фокусировки ( фокусного расстояния линз, величины и направления расфокусировки).

В силу ряда причин , области режимов , обеспечивающих высокое качество кромки реза и высокую эффективность процесса , при лазерной резке металлов зачастую не совпадают .

Рис. 1.8 Параметры реза.

Параметры получаемого реза при лазерной резке металлов имеет много сходных характеристик с другими термическими способами резки. Характеристики получаемого реза определяют следующие показатели (рис. 1.8 ): точность , неровность реза Rz , неперпендикулярность ( клиновидность ) j , протяженность зоны термического влияния b зтв, ширина верхнего реза bв , ширина нижнего реза bн , количество грата ( наплывы на нижней кромке разрезаемого материала ) .

При резке металлов непрерывным излучением лазера различают стационарный и нестационарный характер разрушения материала .

Значение скорости разрушения nр зависит от физико-химических свойств металлов. Весь диапазон скоростей лазерной резки металлов непрерывным излучением можно представить в виде : первой области режимов со скоростью n < nр, соответствующий нестационарному механизму разрушения, второй - n > nр, cоответствующей стационарной скорости разрушения и третьей - n < 0,5 м/мин, автогенный режим резки. Для алюминия автогенный режим резки не проявляется ( не воспламеняется ), при плотности излучения до 106 Вт/cм2. Это обусловлено наличием трудно удаляемой , термически прочной пленки AL2О3 в зоне расплава. Каждая из областей характеризуется определенными физическими условиями cуществования и показателями качества реза.

Нестационарный режим устанавливающийся при малых скоростях резки, является нежелательным и при резке его избегают, т. к. на кромке реза наблюдается значительное количество грата , ухудшающее качество обработки.

Рис. 1.9 Стадии разрушения при резке металлов непрерывным излучением на низких скоростях резки ( нестационарный режим ).

При нестационарном механизме разрушение протекает периодически, на передней кромке материала ( рис.1.9 ). После удаления очередной массы жидкого расплава из канала реза в нижней ее части вновь образуется расплав, т. к. из-за расширения сфокусированного лазерного излучения нижняя ее часть , протяженностью 2rл-x0 , постоянно находится в поле лазерного излучения.


Страница: