Синтез управляющего автомата модели LEGO транспортной тележки и моделирование ее движенияРефераты >> Технология >> Синтез управляющего автомата модели LEGO транспортной тележки и моделирование ее движения
5.8 На основе системы (5.3), окончательно получаем цифровую схему реализации управляющего автомата транспортной тележки, представленную на рисунке 5.2.
Особенностью полученной схемы является то, что она не содержит элементы памяти и задержки и, соответственно, не является тактируемой. Такой вариант реализации возможен для автоматов с двумя состояниями, одно из которых является абсолютно устойчивым. В нашем случае состояние блокировки есть абсолютно устойчивое состояние. Если комбинационная схема сформируем это состояние, то за счёт обратной связи по линии S запрещается реакция выходов X на изменение входных сигналов Y. Выход из этого устойчивого состояния возможен только принудительным обнулением линии S единичным уровнем на линии “Сброс”. Конфликтных “Состязаний” в рассматриваемом автомате не возникает.
6 Решение дополнительного задания
6.1 Действующая на тележку в динамике система сил раскладывается на результирующую силу, приложенную к центру масс тележки и вращающий момент , относительно того же центра масс.
6.2 Как видно из рисунка 1.1 вращающий момент определяется только силой реакции опоры переднего колеса —
, (6.1)
где — угол поворота переднего колеса.
Зная из рисунка, что
, (6.2)
получим:
. (6.3)
Положительные значения вращающего момента соответствуют повороту тележки влево, отрицательные — вправо.
6.3 Результирующая сила, действующая на центр масс тележки, определяется векторной суммой всех сил на рисунке 1.1:
. (6.4)
Для нашего случая важно знать направление действия силы , которое зависит от направлений и величин составляющих рассматриваемой суммы. В свою очередь направления составляющих рассматриваются относительно положения габаритной определяющей, которое характеризуется единичным вектором:
, (6.5)
где — вектор, задающий координаты центра масс тележки;
— вектор, задающий координаты точки приложения силы тяги ;
— габаритная определяющая транспортной тележки.
6.4 Вектор представляется в базисе вектора следующим образом:
, (6.6)
где — единичный вектор, ортогональный вектору ,
или
. (6.7)
Если имеет координаты , то имеет координаты . Тогда вектор , выраженный в базисе Декартовой системы координат, имеет вид:
, (6.8)
где — матрица (оператор) поворота вектора на угол .
Теперь, используя выражение (6.2), окончательно найдём, что
. (6.9)
6.5 Из рисунка 1.1 очевидным образом вытекают выражения для векторов силы тяги и приведённой силы трения, а именно:
, (6.10)
. (6.11)
6.6 Центростремительная реакция трассы определяется произведением массы тележки и нормальной составляющей ускорения её центра масс, возникающей при закруглении траектории движения:
, (6.12)
где — центростремительное ускорение.
Если траектория движения центра масс задаётся вектором , то
, (6.13)
где — вектор скорости центра масс;
— вектор полного ускорения;
— оператор скалярного произведения векторов.
Это физический факт. Вывод его опускаем.
6.7 Центр масс тележки смещается под действием результирующей силы , при этом справедливо:
. (6.14)
6.8 Точка приложения силы тяги смещается под действием вращающего момента , за счёт которого ей придаётся угловое ускорение :
, (6.15)
где — момент инерции тележки относительно центра масс.
Зная угловое ускорение можно найти тангенциальное в скалярной форме:
,
а затем и в векторной:
, (6.16)
где — векторная скорость изменения ориентации габаритной определяющей.
С другой стороны, — вектор тангенциального ускорения может быть выражен через полное ускорение вектора :