Получение деталей из пластмассы
Рефераты >> Технология >> Получение деталей из пластмассы

а) для реактопластов - S=2h/(Z-20)+1/Lg(a) (мм);

б) для термопластов - S=0.8(-2.1) (мм);

где h - высота стенки в мм, Z - величина текучести по Рашигу в мм, a - ударная вязкость в кгс/см в кв.

При невозможности обеспечения по конструктивным соображениям равностенности, допускаемая разностенность должна составлять: при прессовании не более 2:1, при литье под давлением деталей простой конфигурации не более 2,5:1. В этом случае должны соблюдать плавность перехода от одного к другому сечению. Переходы от большего сечения к меньшему рекомендуется выполнять с помощью уклонов (рис.24,б,в), радиусов закруглений, а в цилиндрических деталях с помощью конусности.

4. Ребра жесткости применяют для увеличения жесткости и прочности, усиления особо нагруженных мест по технологическим соображениям (предохранение от коробления, уменьшения времени выдержки и др.). Ребра жесткости не должны доходить до опорной поверхности на 0,5-0,8 мм. Оптимальная толщина ребра жесткости 0,6-0,8 толщины стенки. Рекомендуемые соотношения элементов ребер жесткости приведены на рис.24,в. Нужно стремиться к диагональному или диаметральному расположению ребер жесткости. Форма ребра не должна препятствовать усадке.

5. Торцы для упрочнения деталей выполняют в виде буртиков различных конструкций. Толщина буртиков не должна превышать 1,5-2 толщины стенки. Примеры оформления торцев представлены на рис.24,г.

6. Радиусы закруглений (рис.24,д) назначают на внутренних и наружных сторонах детали, они способствуют устранению или уменьшению внутренних напряжений, уменьшению величины колебания усадки.

Величина радиуса зависит от материала, толщины стенки и регламентируется ГОСТ 10948-84. Минимальная величина радиуса для реактопластов и термопластов - 0,5 мм.

7. Отверстия. Расположение на поверхности, разновидности (сквозные, глухие, ступенчатые и др.), конфигурация (круглые, овальные, прямоугольные и дрю) отверстий определят в значительной мере величину внутренних напряжений, усадку, точность отверстий и межосевых расстояний.

Конфигурация отверстий должна быть наиболее простой формы: поперечные сечения, применяемые в производстве, представлены на рис.24,ж (более простые круглые, овальные - наиболее трудоемки), продольное сечение представлено на рис. 24,з,и.

Расстояние между соседними сквозными отверстиями и краем детали рекомендуется не менее одного диаметра отверстия. Минимальное расстояние (рис.24,к) между отверстиями b1=(S/D+1)*D, а минимальное расстояние от края отверстия до края детали b2 выбирается в зависимости от диаметра отверстия в пределах от 0,5 до 1 диаметра отверстия (рис.24,к).

Размеры отверстий. Диаметр D отверстия назначается от 1,2 мм по ГОСТ 11289-85. Длина отверстия L зависит от метода формования и вида отверстия (сквозное, глухое): прямое прессование L£(1,5-8)D, пресслитье и литье под давлением L£10D - для сквозных отверстий; прямое прессование L£ 25D, пресслитье и литье под давлением L£4D- для глухих отверстий.

8. Опорные поверхности применяют для обеспечения хорошего прилегания сопрягаемых поверхностей. Их оформляют в виде выступов, буртиков, бобышек (рис.24,л).

9. Резьба может быть получена прессованием и литьем под давлением. Минимальный диаметр резьбы из термопластов - 2,5 мм, из реактопластов (пресспорошков и волокнистых материалов) - 3 мм. Геометрические параметры метрической резьбы определяют по ГОСТ 11709-86.

Не рекомендуется изготовлять прессованием прямоугольную резьбу и резьбы с шагом менее 0,7 мм.

При наличие разных диаметров резьбы в детали рекомендуют брать одинаковый шаг у всех резьб с целью одновременного удаления резьбовых знаков.

Особенности конструкции резьбы. Из-за меньшей, чем у металлов, прочности для всех видов резьб обязательно наличие у конца резьбы кольцевой канавки или фаски длиной около одного шага резьбы (рис.24,м).

10. Армирование применяют для увеличения прочности детали, облегчения сборки. В качестве арматуры применяют детали из металлов, керамики, стекла. Для металлической арматуры используют: сталь, латунь, бронзу. С целью надежного закрепления в деталях к конструкции арматуры предъявляют требования: 1) невозможность поворота вокруг оси, 2) невозможность сдвига вдоль оси.

На рис.24,н представлены различные виды арматуры: втулочная, штифтовая, плоская, проволочная. Надежное крепление втулочной арматуры осуществляется выполнением канавки и накатки на наружной поверхности, плоской - вырезками или отверстием, проволочной - изгибом или расплющиванием. Геометрические параметры этих элементов определяют по справочнику. При установке массивной арматуры (втулочной, штифтовой, плоской и др.) следует иметь ввиду, что возможно вспучивание материала при недостаточном расстоянии от арматуры до поверхности детали; минимальное расстояние 2 мм ( при диаметре арматуры 5 мм), то-есть 0,4 диаметра или ширины арматуры.

Задания для самоконтроля

1. Что такое пластмасса?

2. Понятие о процессе и назначении переработки пластмасс.

3. Задачи, решаемые при переработке пластмасс и основное содержание каждой задачи.

4. Структура полимера и основные свойства материала: твердость, прочность, деформируемость, растворимость в растворителях.

5. Что такое олигомеры и с какой целью их используют?

6. По какому признаку разделяют полимеры на термо- и реактопласты?

7.Особенности макроструктуры полимерных материалов.

8.Основные реакции синтеза (отверждение олигомеров, сшивания полимеров) полимеров и их особенности.

9.Особенности строения аморфных и кристаллизующихся полимеров.

10.Основные физические состояния полимеров, технологические и эксплуатационные свойства полимеров.

11.Особенности термохимической кривой аморфных линейных и густосетчатых полимеров.

12.Перечислить и характеризовать основные технологические свойства полимеров.

13.Вязкостные свойства расплава полимеров и возможные способы переработки их в изделия.

14.Деструкция полимеров: причины, протекающие процессы и явления, виды и их характеристика.

15.Виды пластмасс в зависимости от назначения и характеристика основных свойств каждого вида.

16.Основные химические процессы, протекающие при формовании полимеров.

17.Особенности кристаллизации полимеров в зависимости от состояния по отношению к деформации.

18.Можно ли с помощью отжига изменить неоднородную структуру полимера? Если да, то какие параметры изделия можно улучшить?

19.Можно ли полностью или частично каким-либо способом исключить ориентацию макромолекул полимера?

20.Основные способы и операции переработки полимеров, сущность и содержание их.

21.Основное назначение подготовки полимеров к переработке. Влияет ли и если да, то как сушка и влажность на качество изделия?

22.Назначение таблетирования и предварительного нагрева пластмасс перед формованием изделий.

23.Основной показатель, определяющий качество аморфных и кристаллизующихся полимеров. Для каких полимеров характерна в процессе переработки слоевая структура?


Страница: