Получение деталей из пластмассыРефераты >> Технология >> Получение деталей из пластмассы
Кристаллизующийся полимер в зависимости от скорости охлаждения расплава полимера может проявлять два вида структур: аморфную и кристаллическую. При медленном охлаждении кристаллизующихся полимеров совместная укладка отрезков макромолекул образует структуру макромолекул. Это затрудняет переход их из одной конформации в другую, из-за чего отсутствует гибкость макромолекул и нет высокоэластичного состояния (рис. 4, кривая 2). При быстром охлаждении кристаллические структуры не успевают полностью сформировываться и поэтому имеется между ними в переохлажденном полимере “зомороженная” - аморфная структура. Эта аморфная структура при повторном нагреве до температуры выше температуры плавления (Тпл) создает вязкотекучее состояние. Кривая 2 на рис. 4 показывает для кристаллической структуры полимера два состояния: кристаллическое (до температуры плавления) и вязкотекучее (выше температуры плавления).
Вязкотекучее состояние, характерное для аморфного и кристаллического состояния полимера, в основном, обеспечивает при течении полимера необходимые деформации путем последовательного движения сегментов. Вязкость полимера увеличивается с увеличением молекулярной массы полимера, увеличивается также при этом и давление формования изделий.
На рис. 4 представлены термомеханические кривые термопластов, а термомеханическая кривая реактопластов - на рис. 5. Отличие прежде всего заключается в полном прекращении при температуре полимеризации деформации термореактивных полимеров, у термопластов при температуре выше температуры ТТ деформация увеличивается. В
заключении отметим, что с увеличением температуры до некоторой величины у полимерного материала начинается процесс термодеструкции - разложения материала.
Свойства полимеров, определяющие качество в процессе переработки:
1) реологические: а) вязкостные, определяющие процесс вязкого течения с развитием пластической деформации; б) высокоэластичные, определяющие процесс развития и накопления обратимой высокоэластичной деформации при формовании; в) релаксационные, определяющие релаксацию (уменьшение) касательных и нормальных напряжений, высокоэластичной деформации и ориентированных макромолекулярных цепей;
2) стойкость полимеров к термоокислительной, гидролитической и механической деструкции в процессе формования под действием температуры, кислорода, влаги, механических напряжений;
3) теплофизические, определяющие изменение объема, нагрев и охлаждение изделия в процессе формования и фиксирования формы и размеров;
4) влажность, определяющая текучесть материала при формовании и качество изделия (вызывает гидролитическую деструкцию при формовании);
5) объемные характеристики сыпучих материалов в твердом состоянии (насыпная масса, сыпучесть, гранулометрический состав).
Вязкостные свойства расплава полимеров. Формование изделий из полимеров осуществляют в процессе их вязкого течения, сопровождающегося пластической деформацией. При этом тонкий слой материала, соприкасающийся с неподвижной стенкой инструмента, из-за прилипания к ней имеет нулевую скорость смещения (неподвижен), средний слой - наибольшую скорость смещения V; в режиме установившегося течения связь между напряжением сдвига t и скоростью сдвига g линейная (закон Ньютона для вязких жидкостей): t=h*g, где h - коэффициент вязкости или вязкость. Характер зависимости скорости сдвига от напряжения сдвига представляют кривой течения (рис.6), на которой выделяют участки: 1 - участок линейной зависимости, характерный только для низких напряжений сдвига; 2 - участок с нелинейной зависимостью, для которого характерно уменьшение вязкости при повышении напряжения сдвига; 3 - участок с высоким напряжением сдвига.
Улучшению течения материала способствуют увеличение температуры, увеличение напряжения сдвига, повышение количества влаги, снижение давления и уменьшение молекулярной массы расплава.
Многие свойства полимерных материалов в изделиях зависят от структуры, которую формирует процесс переработки. В зависимости от полимера и условий переработки в изделиях возникает аморфная или кристаллическая структура.
Структура изделия с аморфным полимером характеризуется определенной степенью ориентации участков цепных макромолекул и расположением ориентированных областей по сечению изделия вдоль направления сдвига (течения) материала. Это приводит к анизотропии свойств.
Структуру изделия с кристаллическим полимером характеризует определенная степень кристалличности (от 60 до 95%) и неравномерность кристаллических областей по сечению. Свойства таких изделий, полученных в разных условиях переработки, несмотря на морфологическую схожесть структуры, различны.
Показатели качества изделий из полимерных материалов зависят от свойств, условий подготовки, переработки и физической модификации материала. Внешний вид изделий зависит от условий переработки, чистоты материала, влажности.
Диэлектрические показатели и химическая стойкость зависят от химической структуры и модификации полимера.
Механические свойства - прочность, ударная стойкость, деформация, жесткость, теплостойкость - зависят от надмолекулярной структуры, а коэффициент трения и износостойкость, стойкость к горению зависят от химической структуры и модификации.
Эксплуатационные свойства - размерная точность и размерная стабильность - зависят, как от химической структуры, молекулярных характеристик, технологических свойств, так и от технологии переработки и технологичности конструкции.
Термостабильность полимеров. Основным показателем в этом случае является деструкция.
Деструкция полимеров - это изменение строения макромолекул. Деструкция может протекать под действием тепла, кислорода, химических агентов (в том числе воды), света, излучений высокой энергии, механических напряжений и т.п., как от отдельного, так и от совокупности параметров. Она сопровождается уменьшением молекулярной массы, выделением газообразных и низкомолекулярных продуктов, изменеием окраски и появлением запаха.
Деструкция может сопровождаться не только разрушением макромолекул, но и сшиванием их (структурированием), что вызывает увеличение массы и вязкости расплава. Следствием этого является нарушение всех свойств материала, снижение стабильности свойств изделий.
При переработке полимеров может происходить как термоокислительная, так и механическая деструкция, а у гигроскопических материалов еще и гидролиз.
2.3. Пластические массы
2.3.1. Классификация пластмасс
Признаками классификации пластмасс являются: назначение, вид наполнителя, эксплуатационные свойства и другие признаки.
Классификация пластмасс по эксплуатационному назначению: 1 - по применению, 2 - по совокупности параметров эксплуатационных свойств, 3 - по значению отдельных параметров эксплуатационных свойств.
По применеию различают: 1 - пластмассы для работы при действии кратковременной или длительной механической нагрузки: стеклонаполненные композиции полипропилена ПП, этролы, пентапласт, полисульфон ПСФ, полиимид ПИ, материалы на основе кремнийорганических соединений и др.; 2 - пластмассы для работы при низких температурах (до минус 40-60 С): полиэтилены ПЭ, сополимеры этилена СЭП, СЭБ, СЭВ, полипропилен морозостойкий, фторопласт ФТ, полисульфон ПСФ, полиимиды ПИ и др.; 3 - пластмассы антифрикционного назначения: фторопласты ФТ, полиимиды ПИ, текстолиты, полиамиды, фенопласты, полиформальдегид ПФ и др; 4 - пластмассы электро- и радиотехнического назначения: полиэтилены ПЭ, полистиролы ПС, фторопласты ФТ, полисульфон ПСФ, полиимиды, отдельные марки эпоксидных и кремнийорганических материалов и др.; 5 - пластмассы для получения прозрачных изделий: полистирол ПС, прозрачные марки фторпласта ФТ, полиамидов 6,12, ПЭТФ, полисульфон ПСФ, эпоксидные смолы и др.; 6 - пластмассы тепло- и звукоизоляционного назначения: газонаполненные материалы на основе полиэтилена ПЭ, полистирола ПС, поливинилхлорида, полиуретана ПУР, полиимида ПИ, фенопласта, аминопласта и др.; 7 - пластмассы для работы в агрессивных средах: полиэтилены ПЭ, фторопласты ФТ, полипропилен ПП, поливинилхлорид ПВХ, полиимиды ПИ, полусольфон ПСФ и другие.