Расчет характеристик участка линейного нефтепроводаРефераты >> Технология >> Расчет характеристик участка линейного нефтепровода
Линеаризованная система имеет вид:
(15)
Приняв во внимание, что в длинном нефтепроводе у нас будут отсутствовать инерционные силы, первое слагаемое во втором уравнении можно принять равным нулю.
Система уравнений примет вид:
(16)
Перейдем к реальным параметрам трубопровода. – массовый расход.
Получим:
(17)
Примем а .
(18)
Система дифференциальных уравнений (18) является математической моделью линейного нефтепровода.
Статический режим работы линейного нефтепровода.
Для рассмотрения статического режима линейного нефтепровода воспользуемся вторым уравнением системы (18)
где .
Т.к. получим.
Приняв во внимание то, что получим.
Проинтегрировав это уравнение
получим:
Коэффициент гидравлического сопротивления определяется по формуле А. Д. Альтшуля.
Число Рейнольдса определяется по формуле где – вязкость. Число Рейнольдса безразмерная величина.
Проверим.
Вычислим число Рейнольдса:
.
Построим график статического режима линейного трубопровода.
Динамический режим работы линейного нефтепровода.
Допустим, что у нас был установившийся режим, характеризующийся при:
.
Пусть в какой-то момент времени t = 0 на входе Р
был создан скачек: , но давление на
выходе нефтепровода не изменилось. Нас будет ин-
тересовать как изменится давление в любой точке t
нефтепровода.
Воспользуемся ранее выведенной системой дифференциальных уравнений (18).
где (1)
Дифференцируя второе уравнение по х и учитывая первое, получим уравнение:
. (2)
Для упрощения уравнения примем , тогда уравнение запишем:
. (3)
Напишем для него начальные и граничные условия:
Начальные условия: .
при:
где есть единичный скачек.
Решим уравнение (3) используя метод преобразования Лапласа.
Для этого, вместо Р введем вспомогательную величину Р*, такую что
где S - оператор (4)
тогда граничные условия перепишутся в виде:
1.
2. (5)
Умножим обе части уравнения (3) на e-St и проинтегрируем в пределах от 0 до во времени
(6)
Рассмотрим левую часть уравнения
. (7)
Рассмотрим левую часть уравнения
. (8)
Приравниваем обе части:
. (9)
Найдем сначала решение однородного уравнения
. (10)
Пусть Р* определяется как .
Нам необходимо определить и С
откуда , а .
Тогда решением уравнения является
(11).
Для определения коэффициентов С1 и С2 учтем граничные условия
х=0; (12)
x = L; (13)
отсюда выразим значения С1 и С2 : ,
(14).
Подставив найденное значение коэффициентов в (11) окончательно получаем:
(15).
Применим к выражению (15) обратное преобразование Лапласа
(16)