О пропорциях
Рефераты >> Архитектура >> О пропорциях

бы «скрепила» их в единое целое. При этом одна часть целого должна так относиться к другой, как целое к большей части. Такая пропорция отвечает гармоническому соединению, она и является золотой. Античные скульпторы и архитекторы широко использовали ее при создании своих произведений. В этом легко убедиться при изучении шедевров древнегреческого искусства.

В эпоху итальянского Возрождения золотая пропорция возводится в ранг главного эстетического принципа. Леонардо да Винчи именует ее «Sectjo autea» откуда и получил начало термин «золотое сечение». (По мнению белорусского философа Э. Сороко, термин «золотое сечение» идет от Клавдия Птолемея, который дал это название числу 0,618, убедившись в том, что рост человека правильного телосложения делится именно в таком отношении.) Лука Пачоли в 1509 году пишет первое сочинение о золотой пропорции, названной им «божественной». Иоганн Кеплер говорит о ней как о «бесценном Сокровище», как об одном из двух сокровищ геометрии.

После И. Кеплера золотое сечение было предано забвению, и около 200 лет о нем никто не вспоминал. Лишь в 1850 году немецкий ученый Цейзинг открыл его снова. В своих «Эстетических исследованиях» он пишет: «Для того чтобы целое, разделенное на две неравные части, казалось прекрасным с точки зрения формы, между меньшей и большей частями должно быть такое же отношение, что между большей частью и целым». Он называет это законом пропорций и обнаруживает его проявление в пропорциях человеческого тела и животных, в некоторых эллинских храмах, в ботанике и музыке. Дать определение золотой пропорции еще не значит её изучить. Нужно было определить величину этого удивительного соотношения.

Она оказалась близкой к 1,6, а если точнее — к 1,62, еще точнее — к 1,618. Более глубокий математический анализ показал, что золотая пропорция является величиной иррациональной, то есть несоизмеримой, ее нельзя представить в виде отношения двух целых чисел, она отвечает простому математическому выражению (1+V5):2 и равна 1,6180339 . Накопленные знания об этом уникальном соотношении частей в целом по эстафете передаются от поколения к поколению, наполняясь новым содержанием, проявляются в самых разнообразных областях науки, проникают в технику.

К понятию «золотая пропорция» в наибольшей степи подходит определение «формула красоты». Действительно, эта пропорция обладает наиболее отчетливыми признаками гармоничности прекрасного. Эта пропорция знаменует собой как бы вершину эстетических изысканий, некий предел гармонии природы. Эта пропорция не только является господствующей во многих произведениях искусства, она определяет закономерности развития многих организмов, ее присутствие отмечают почвоведы, химики, геологи и астрономы.

Такая универсальность золотой пропорции не делает её простой и доступной для изучения. Многое в сущности этой «константы гармоничности» остается неизведанным. Еще неясно, почему Природа предпочла эту пропорцию всем другим — не за ее ли уникальность? Характерно, что золотая пропорция отвечает делению целого на две неравные части, следовательно, она отвечает асимметрии. Почему же она так привлекательна, часто более привлекательна, чем симметричные пропорции? Очевидно, эта пропорция обладает каким-то особым свойством. Целое можно поделить на бесконечное множество неравных частей, но только одно из таких сечений отвечает золотой пропорции. По-видимому, в этой пропорции скрыта одна из фундаментальных тайн природы, которую еще предстоит открыть. Рассмотрение особенностей проявления золотой пропорции — от объектов природы до произведений искусств и составляет предмет книги. Она не претендует на полноту изложения проблемы, так как исследования различных форм проявления золотой пропорции продолжаются, и в печати периодически появляются все новые и новые публикации. Автор стремился изложить наиболее интересные факты и закономерности, касающиеся золотой пропорции, в достаточно популярной и увлекательной форме, делающей книгу доступной широкому кругу читателей. Насколько это удалось — судить читателям.

Золотая пропорция — понятие математическое, ее изучение — это прежде всего задача науки, Но она же является критерием гармонии и красоты, а это уже категории искусства. Неудивительно, что при изложении некоторых мыслей и выводов поэтическая форма оказалась предпочтительной, и автор использовал в книге свои стихотворения, относящиеся к рассматриваемой теме. В конечном итоге, искусство — не противник, а союзник науки.

б.Наблюдать и применять

Понимание и использование принципа золотого сечения не должно быть уделом некоей элиты - это самое базовое знание, с которого начинаются бесконечно сложные законы гармонии и соизмерения. Нет границ осмысленному применению этих законов в жизни каждого дня. Выделение главного и второстепенного по отношению к целому может касаться чего угодно. Это и распределение своего времени, и любой творческий процесс, включая все виды искусства, литературу, музыку, и формирование собственного отношения к любым процессам и явлениям. Это и есть тот Золотой, срединный путь, о котором говорили древние.

Каждый художник, каждый режиссер, каждый специалист по рекламе знают, как сделать изображение приятным глазу, как построить его по законам гармонии и психологии человеческого восприятия. Порой злейшие враги культуры достигают значительных побед, используя знания о законах Природы. Так, под видом приятного, располагающего к себе мы нередко допускаем к сердцу сильнейшие яды. Столько люди говорят о свободе, тогда как сами отравляются добровольно, удивляясь потом, откуда их болезни и несчастья.

Не может быть свободы в невежестве. Грубость и неразборчивость вкуса должна преодолеваться. Пусть это будет заботой как отдельных людей, так и общин, и государств.

3.Пропорции.

а.Пропорции в природе.

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль "кривой жизни".


Страница: