Жидкие кристаллы
Рефераты >> Физика >> Жидкие кристаллы

Оптические наблюдения дали значительное количест­во фактов о свойствах жидкокристаллической фазы, ко­торые необходимо было понять и описать. Одним из первых достижений в описании свойств жидких кристал­лов, как уже упоминалось во введении, было создание теории упругости жидких кристаллов. В современной форме она была в основном сформулирована английским ученым Ф. Франком в пятидесятые годы.

Постараемся проследить за ходом мысли и аргумен­тами создателей теории упругости ЖК. Рассуждения бы­ли (или могли быть) приблизительно такими. Установле­но, что в жидком кристалле, конкретно нематике, сущест­вует корреляция (выстраивание) направлений ориента­ции длинных осей молекул. Это должно означать, что ес­ли по какой-то причине произошло небольшое наруше­ние в согласованной ориентации молекул в соседних точ­ках нематика, то возникнут силы, которые будут старать­ся восстановить порядок, т. е. согласованную ориентацию молекул. Конечно, исходной, микроскопической, причиной таких возвращающих сил является взаимодей­ствие между собой отдельных молекул. Однако надеять­ся на быстрый успех, стартуя от взаимодействия между собой отдельных молекул, да еще таких сложных, как в жидких кристаллах, было трудно. Поэтому создание тео­рии пошло по феноменологическому пути, в рамках ко­торого вводятся некоторые параметры (феноменологи­ческие), значение которых соответствующая теория не берется определить, а оставляет их неизвестными или из­влекает их значения из сравнения с экспериментом. При этом теория не рассматривает молекулярные аспекты строения жидких кристаллов, а описывает их как сплош­ную среду, обладающую упругими свойствами.

Для кристаллов существует хорошо развитая теория упругости. Еще в школе учат тому, что деформация твер­дого тела прямо пропорциональна приложенной силе и обратно пропорциональна модулю упругости К. Возника­ет мысль, если оптические свойства жидких кристаллов подобны свойствам обычных кристаллов, то, может быть, жидкий кристалл, подобно обычному кристаллу, облада­ет и упругими свойствами. Может показаться на первый взгляд, что эта мысль совсем уж тривиальна. Однако не торопитесь с суждениями. Вспомните, что жидкий кри­сталл течет, как обычная жидкость. А жидкость не прояв­ляет свойств упругости, за исключением упругости по от­ношению к всестороннему сжатию, и поэтому для нее модуль упругости по отношению к обычным деформаци­ям строго равен нулю. Казалось бы, налицо парадокс. Но его разрешение в том, что жидкий кристалл — это не обычная, а анизотропная жидкость, т. е. жидкость, свойства которой различны в различных направлениях.

Таким образом, построение теории упругости для жидких кристаллов было не таким уж простым делом и нельзя было теорию, развитую для кристаллов, непо­средственно применить к жидким кристаллам. Во-первых, Существенно, что, когда говорят о деформации в жидких кристаллах, то имеют в виду отклонения направления ди­ректора от равновесного направления. Для нематика, на­пример, это означает, что речь идет об изменении от точки к точке в образце под влиянием внешнего воздей­ствия ориентации директора, который в равновесной си­туации, т. е. в отсутствии воздействия, во всем образце ориентирован одинаково. В обычной же теории упругости деформации описывают смещение отдельных точек твердого тела относительно друг друга под влиянием приложенного воздействия. Таким образом, деформа­ции в жидком кристалле — это совсем не те привычные всем деформации, о которых говорят в случае твердого тела. Кроме того, упругие свойства жидкого кристалла в общем случае следует рассматривать, учитывая его тече­ние, что также вносит новый элемент и тем самым услож­няет рассмотрение по сравнению с обычной теорией уп­ругости. Поэтому здесь ограничимся рассказом об упру­гости жидких кристаллов в отсутствие течений.

Оказывается, любую деформацию в жидком кристал­ле можно представить как одну из трех допустимых в ЖК видов изгибных деформаций либо как комбинацию этих трех видов деформации. Такими главными деформа­циями являются поперечный изгиб, кручение и продоль­ный изгиб.

Коэффициенты пропорциональности между упругой энергией жидкого кристалла и деформациями изгибов называют упругими модулями. Таких упругих модулей в жидких кристаллах по числу деформаций три —K1, К2 и К3. Численные значения этих модулей несколько отлича­ются друг от друга. Так, модуль продольного изгиба К3 обычно оказывается больше двух других модулей. Наименьшую упругость жидкий кристалл проявляет по отношению к кручению, т. е. модуль Кг, как правило, меньше остальных.

Такой результат качественно можно понять, вспоми­ная обсуждавшуюся выше модель нематика как жидко­сти ориентированных палочек. Действительно, чтобы осуществить продольный изгиб, надо прикладывать уси­лия, которые стремятся изогнуть эти палочки (а они жест­кие). В деформации же кручения, например, происходит просто поворот палочек-молекул относительно друг дру­га, при этом не возникает усилий, связанных с деформа­цией отдельной палочки-молекулы.

Поэтому и оказывается, что упругость по отношению к продольному изгибу (модуль Кз), больше упругости по отношению к кручению (модуль К2).

Чтобы сравнить упругость жидкого кристалла с упру­гостью обычного кристалла, надо сравнить их упругие энергии, приходящиеся на единицу объема. При этом можно для качественной оценки пренебречь различием модулей поперечного, продольного изгиба и кручения и, вычисляя упругую энергию жидкого кристалла, исполь­зовать их среднее значение. Сравнение показывает, что упругая энергия твердого тела в типичной ситуации ока­зывается по меньшей мере на десять порядков больше упругой энергии жидкого кристалла.

Таким образом, теория упругости жидких кристаллов, описывающая их как сплошную среду, т. е. претендую­щая только на описание свойств ЖК, усредненных по расстояниям больше межмолекулярных, приводит к вы­воду, что минимальная энергия жидкого кристалла соот­ветствует отсутствию деформаций в нем. Для нематика таким состоянием с минимальной энергией или, как гово­рят, основным состоянием является конфигурация с одинаковой ориентацией директора во всем объеме об­разца. Любое отклонение распределения направлений директора от однородного (т. е. постоянного во всем объеме) связано с наличием в нематике дополнительной упругой энергии, т. е. может быть реализовано только за счет приложения внешних воздействий, например, свя­занных с поверхностями образца, внешними электриче­скими и магнитными полями и т. д. В отсутствие этих воз­действий или при снятии их нематик стремится возвра­титься в состояние с однородной ориентацией дирек­тора.

Континуальная теория применима для описания и других типов жидких кристаллов. Для них, однако, тре­буются определенные модификации теории. Но об этом речь пойдет дальше.

ГИДОРДИНАМИКА ЖК.

Только что мы познакомились с упругими свойствами жидкого кристалла, сближающими его с твердыми телами. При этом обнаружились сущест­венные отличия его упругих свойств от свойств кристал­ла как в качественном, так и количественном отношении. Теперь познакомимся детально со свойством жидкого кристалла, типичным для жидкости, — текучестью, изуче­нием которой занимается наука гидродинамика.


Страница: