Жидкие кристаллы
Вот в таких условиях скептицизма со стороны многих авторитетов и изобилия противоречивых фактов вели свои работы первые, тогда немногочисленные, исследователи жидких кристаллов, настоящие энтузиасты своего дела. К их числу следует отнести немецкого химика Д. Форлендера, который в начале двадцатого века в университетском городе Галле совместно со своими учениками изучал химию жидких кристаллов. Он пытался ответить на вопрос, какими свойствами должны обладать молекулы вещества, чтобы оно имело жидкокристаллическую фазу. Форлендер нашел большое количество новых соединений, обладающих жидкокристаллической фазой, и внимательно исследовал свойства молекул соответствующих соединений, в частности структурные. В результате его работ стало ясно, что жидкие кристаллы образуют вещества, молекулы которых имеют удлиненную форму
Время шло, открытия о жидких кристаллах постепенно накапливались, но не было общего принципа, который позволил бы установить какую-то систему в представлениях о жидких кристаллах. Как говорят, настало время для классификации предмета исследований. Заслуга в создании основ современной классификации жидких кристаллов принадлежит французскому ученому Ж. Фриделю. В двадцатые годы Фридель предложил разделить все жидкие кристаллы на две большие группы. Одну группу жидких кристаллов Фридель назвал нематическими, другую смектическими. (Почему такие на первый взгляд непонятные названия дал Фридель разновидностям жидких кристаллов, будет понятно несколько ниже.) Он же предложил общий термин для жидких кристаллов — «мезоморфная фаза». Этот термин происходит от греческого слова «мезос» (промежуточный), а, вводя его, Фридель хотел подчеркнуть, что жидкие кристаллы занимают промежуточное положение между истинными кристаллами и жидкостями, как по температуре, так и по своим физическим свойствам. Нематические жидкие кристаллы в классификации Фриделя включали уже упоминавшиеся выше холестерические жидкие кристаллы как подкласс. Когда классификация жидких кристаллов была создана, более остро встал вопрос: почему в природе реализуется жидкокристаллическое состояние? Полным ответом на подобный вопрос принято считать создание микроскопической теории. Но в то время на такую теорию не приходилось и надеяться (кстати, последовательной микроскопической теории ЖК не существует и по сей день), поэтому большим шагом вперед было создание чешским ученым X. Цохером и голландцем С. Озерном феноменологической теории жидких кристаллов, или, как ее принято называть, теории упругости ЖК. В 30-х годах в СССР В. К. Фредерике и В. Н. Цветков первыми изучили необычные электрические свойства жидких кристаллов. Можно условно считать, что рассказанное выше относилось к предыстории жидких кристаллов, ко времени, когда исследования ЖК велись малочисленными коллективами. Современный этап изучения жидких кристаллов, который начался в 60-е годы и придал науке о ЖК сегодняшние формы, методы исследований, широкий размах работ сформировался под непосредственным влиянием успехов в технических приложениях жидких кристаллов, особенно в системах отображения информации. В это время было понято и практически доказано, что в наш век микроэлектроники, характеризующийся внедрением микроминиатюрных электронных устройств, потребляющих ничтожные мощности энергии для устройств индикации информации, т. е. связи прибора с человеком, наиболее подходящими оказываются индикаторы на ЖК. Дело в том, что такие устройства отображения информации на ЖК естественным образом вписываются в энергетику и габариты микроэлектронных схем. Они потребляют ничтожные мощности и могут быть выполнены в виде миниатюрных индикаторов или плоских экранов. Все это предопределяет массовое внедрение жидкокристаллических индикаторов в системы отображения информации, свидетелями которого мы являемся » настоящее время. Чтобы осознать этот процесс, достаточно вспомнить о часах или микрокалькуляторах с жидкокристаллическими индикаторами. Но это только начало. На смену традиционным и привычным устройствам идут жидкокристаллические системы отображения информации. Часто бывает, технические потребности не только стимулируют разработку проблем, связанных с практическими приложениями, но и часто заставляют переосмыслить общее отношение к соответствующему разделу науки. Так произошло и с жидкими кристаллами. Сейчас понятно, что это важнейший раздел физики конденсированного состояния.
Кристаллы некоторых органических веществ при нагревании, прежде чем расплавиться и перейти в обычную жидкость, проходят при повышении температуры через стадию жидкокристаллической фазы. Как мы увидим ниже, жидкокристаллических фаз может быть у одного и того же соединения несколько. Но сначала для того, чтобы не осложнять знакомство с жидкокристаллической фазой несущественными здесь подробностями, рассмотрим наиболее простую ситуацию, когда соединение обладает одной жидкокристаллической фазой. В этом случае процесс плавления кристалла идет в две стадии. Сначала при повышении температуры кристалл испытывает «первое плавление», переходя в мутный расплав. Затем при дальнейшем нагреве до вполне определенной температуры происходит «просветление» расплава. «Просветленный расплав» обладает всеми свойствами жидкостей. Мутный расплав, который и представляет собой жидкокристаллическую фазу, по своим свойствам существенно отличается от жидкостей, хотя обладает наиболее характерным свойством жидкости — текучестью. Наиболее резкое отличие жидкокристаллической фазы от жидкости проявляется в оптических свойствах. Жидкий кристалл, обладая текучестью жидкости, проявляет оптические свойства всем нам знакомых обычных кристаллов.
Чтобы схематично представить себе устройство нематика, удобно образующие его молекулы представить в виде палочек. Для такой идеализации есть физические основания. Молекулы, образующие жидкие кристаллы, как уже говорилось, представляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, протяженности которых в одном направлении в 2—3 раза больше, чем в поперечном. Можно считать, что направление введенных нами палочек совпадает с длинными осями молекул. При введенной нами идеализации структуру нематика следует представлять как «жидкость одинаково ориентированных палочек». Это означает, что центры тяжести палочек расположены и движутся хаотически, как в жидкости, а ориентация при этом остается у всех палочек одинаковой и неизменной.
Напомним, что в обычной жидкости не только центры тяжести молекул движутся хаотически, но и ориентации выделенных направлений молекул совершенно случайны и не скоррелированны между собой.
УПРУГОСТЬ ЖИДКОГО КРИСТАЛЛА.
Выше в основном говорилось о наблюдениях, связанных с проявлением необычных оптических свойств жидких кристаллов. Первым исследователям бросались в глаза, естественно, свойства, наиболее доступные наблюдению. А такими свойствами как раз и были оптические свойства. Техника оптического эксперимента уже в девятнадцатом веке достигла высокого уровня, а, например, микроскоп, даже поляризационный, т. е. позволявший освещать объект исследования поляризованным светом и анализировать поляризацию прошедшего света, был вполне доступным прибором для многих лабораторий.