Взаимодействие электронов с поверхностными акустическими волнами
|
3. Физическая модель процесса акустоэлектронного взаимодействия.
Передача импульса от волны электронам сопровождается поглощением звуковой энергии, поэтому действующая на электрон сила пропорциональна коэффициенту электронного поглощения звука ae и интенсивности акустической волны I. Плоская волна, интенсивность которой при прохождении слоя толщиной Dx: уменьшается за счет электронного поглощения на величину aeIDx, передает в среду механический импульс
aeIDx/us, приходящийся на neDx электронов слоя (vs - скорость звука. ne - концентрация свободных электронов). Следовательно, на отдельный электрон действует средняя сила
(1)
Под действием этой силы появляется акустоэлектрический ток, плотность которого Jac=mneF(m - подвижность электронов) определяется соотношением
Jac=maeI/us (2) (соотношение Вайнрайха). В случае произвольных акустических полей выражение для акустоэлектрического тока получается как среднее по времени значение произведения переменной концентрации свободных носителей n, возникающих под действием акустических полей в проводнике, и их переменной скорости v.
Jac=e<> (3) ,(e - заряд электрона).
Для наблюдения акустоэлектрического эффекта измеряют либо ток в проводнике, в котором внешним источником возбуждается звуковая волна, либо напряжение на его разомкнутых концах. В последнем случае на концах проводника возникает эдс, индуцированная звуковой волной (акустоэдс):
, (4) где L - длина проводника. I0 - интенсивность звука на входе образца, a = ae+a0 – коэффициент поглощения звука, учитывающий как электронное поглощение ae так н решеточное ao, s- проводимость образца.
Основной механизм поглощения в полупроводниках в широком диапазоне температур и частотэлектронное поглощение ультразвука. Несколько механизмов АЭВ, наличие различных типов носителей и примесных центров, возможность изменения концентрации и подвижности, влияние электрического и магнитного полей приводят к сложной картине акустического поглощения в полупроводниках. В пьезополупроводниках пьезоэлектрический механизм АЭВ преобладает над всеми другими при температуpax вплоть до комнатных и в диапазоне частот вплоть до десятков Гц и дает основной вклад в поглощение по сравнению с другими механизмами диссипации акустической энергии. Для комнатных температур, когда длина свободного пробега электрона много меньше длины волны (kle<<1), коэффициент поглощения имеет вид
, где K2=4p2b2/e0rvs2 коэффициент электромеханической связи.
На высоких частотах, rд=Öe0ve/4pe n0 (rд – радиус Дебая-Хюккеля, ve - тепловая скорость электрона, n0 - плотность электронов), степень экранирования принимает большие значения.
В процессе АЭВ сила F, действующая на свободные носители со стороны деформированной решетки, вызывает электронные токи и перераспределение носителей. Возникающие при этом электромагнитные поля частично компенсируют силу F, и реально действующая сила оказывается в результате экранирования в e(w,k) раз меньше (e- диэлектрическая проницаемость кристалла; w и k- частота и волновой вектор УЗ-волны). Перераспределенные заряды и индуцированные поля действуют на решетку с силой, объемная плотность которой пропорциональна в конечном итоге амплитуде деформации. Следующие графики отражают зависимость силы воздействия на электроны со стороны акустических волн на различных частотах.
|
Эффект увлечения обнаруживается в виде тока или ЭДС. Плотность тока может быть записана в виде:
, где е, m*,<t> - заряд, эффективная масса, и усредненное время релаксации носителей.
Приложение
Упругие волны – упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Например, волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях и газах и др. При распространении У. в. происходит перенос энергии упругой деформации в отсутствии потока вещества, который имеет место только в особых случаях, например при акустическом ветре. Всякая гармоническая У. в. характеризуется амплитудой и частотой колебания частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Особенность У. в. состоит в том, что их фазовая и групповая скорости не зависят от амплитуды и геометрии волны (плоская, сферическая, цилиндрическая волны).
Усиление акустических волн в полупроводниках возникает, когда имеется направленное движение (дрейф) носителей заряда вдоль распространения волны. Дрейф создается внешним электрическим полем.
Нелинейные эффекты в упругой среде
С повышением интенсивности звуковой волны все большую роль начинают играть нелинейные эффекты, искажающие ее форму, ограничивающие рост ее интенсивности при усилении или уменьшающие ее затухание. В проводящих средах, помимо обычного решеточного ангармонизма, существует специфический механизм нелинейности, связанный с захватом электронов проводимости в минимумы потенциальной энергии электрического поля, сопровождающего акустическую волну {т. н. электронная акустическая нелинейность). В полупроводниках такой механизм нелинейности становится существенным при интенсивностях ультразвука, значительно меньших тех, при которых сказывается ангармонизм решетки, характерный для диэлектриков. Захват электронов электрическим полем волны приводит к различным эффектам в зависимости от соотношения между длиной звуковой волны и длиной свободного пробега электрона.
Величина акустоэлектрического эффекта, так же как и значение электронного поглощения звука, зависит от частоты УЗ. Акустоэлектрический эффект максимален, когда длина волны оказывается одного порядка с радиусом дебаевского экранирования для свободных электронов. Акустоэдс существенно меняется с изменением и имеет максимум в области значений , где электронное поглощение звука также максимально. Такие зависимости наблюдаются в фотопроводящих полупроводниках, в которых значительные изменения проводимости происходят при изменении освещенности.