Взаимодействие электронов с поверхностными акустическими волнами
Рефераты >> Физика >> Взаимодействие электронов с поверхностными акустическими волнами

На рис. 6.17 в показано изменение напряженности электрического поля акустической волны . На этом же рисунке приведено пунктирной линией изменение деформации . Видно, что напряженность электрического поля максимальна в областях, где деформация минимальна и наоборот, минимальна в местах где деформация имеет максимум. Горизонтальными стрелками указаны направления электрического поля .

Таким образом, бегущая акустическая волна в металле вызывает электрическую волну, распространяющуюся с той же скоростью. Возникновение электрического поля приводит к перераспределению свободных электронов: в местах минимума потенциальной энергии плотность электронов уменьшается.

Поскольку при движении акустической волны возникшие потенциальные ямы движутся вдоль цепочки со скоростью звука u3, то они увлекают за собой электроны, находящиеся в этих ямах.

2. Основные параметры эффекта.

Усиление ультразвука возможно, если только оно превосходит поглощение, обусловленное решеткой. На опыте наблюдалось усиление ультразвука в пьезополупроводниках (CdS, CdSe, Те, GaAs, InSb и др.) в диапазоне частот 10-104 МГц при температуpax от гелиевых до комнатных. Значения экспериментально наблюдаемых инкрементов составляют 20-80 дБ/см. При низких температурах наблюдалось также усиление ультразвука в неполярных полупроводниках (Ge) и полуметаллах (Bi).

Опыты приводились на образцах 1 и 2 кристаллов CdS. Образцы имели форму прямоугольных параллелепипедов со следующими разме­рами ll вдоль осей x, у, z (z — гексагональная ось): lx = 52,0, lv = 11.52, lz = 11,55 мм (образец 1); lx = 28,4. lv = 12,11, lz — 12,15 мм (образец 2). Образцы были желтого цвета, прозрачные.

Их электропроводность а менялась в зависимости от освещения в пределах

s = 10-10–10-2 Ом-1 ·см-1.

Эффективная дрейфовая подвижность m = 140 см-с-1-В-1.

Рэлеевские волны распространялись в плоскостях ху кристаллов, а поперечные — вдоль осей у с направлением смещений частиц в волне параллельно осям z. Поверхности ху об­разцов были хорошо обработаны.

Коэффициенты усиления (затухания) измерялись в импульсном режиме на частоте ~ 30 МГц при длитель­ности импульсов 2—3 мкс для рэлеевских волн и 1—2 мкс для поперечных волн. На рис. 3.17 приведена схема эксперимента. Дрейфовые электроды, служащие для со­здания в поверхностном слое кристалла постоянного элект­рического поля Е0, наносились на плоскость ху путем на­пыления индия и представляли собой две параллельные полоски шириной 1,5 мм, находящиеся на расстоянии 7 мм друг от друга. Кристалл освещался ртутной лампой ДРШ-500, причем засвечивалась только узкая полоска (поверхностный слой 0.5 мм) между электродами. Осталь­ная часть кристалла была закрыта непрозрачным экра­ном. Такое освещение позволяло локализовать электроны проводимости кристалла (созданные светом) в поверхно­стном слое между дрейфовыми электродами и этим до­стигнуть постоянства напряженности Е0 по координате х (в пределах 10%). Для развязки импульсов дрейфового поля п импульсов с частотой заполнения 30 МГц. подавае­мых на излучатель через коаксиальный кабель, использо­вались индуктивность L и емкости С.

Электронная часть схемы для измерения усиления поперечных волн была точно такая же. за исключением развязки, которая осуществлялась там акустическим способом: с помощью двух клбических буферов из плав­леного кварца, между которыми был зажат кристалл CdS. Дрейфовое поле подавалось на кристалл через индиевые электроды на его торцах, а поперечные волны распростра­нялись через систему буфер — кристалл — буфер. Грани кристалла и буферов были параллельны с точностью ± 5 мкм. Все акустические контакты осуществлялись тонкими пленками эпоксидной смолы без отвердителя.

1 —задающий генератор запускающий схему и вырабатывающий импульсы синхронизации 2—генератор импульсов прямоугольной формы с синусоидальным заполнением 3 —усилитель, 4—осциллоскоп, 5 —генератор импульсов дрейфового поля 6 — кристаллический образец 7 — гребенчатые излучатель и приемник релеевских вопи, 8—дрейфовые электроды  

На рис. 3.18—3.21 приведены результаты измерений. а рис. 3.18 и 3.19 представлены кривые усиления рэле­евских (рис. 3.18, а, 3.19, а) и поперечных (рис. 3.18, б, 3.19, б) волн в образцах 1, 2 соответственно. По осям абсцисс отложена напряженность дрейфового поля в кри­сталле в киловольтах, по осям ординат — коэффициенты усиления (затухания) в дБ/см. Длина пути в кристалле, на которой происходило усиление рэлеевских волн, со­ставляла 7мм, для поперечных волн эта длина равнялась 11.5 мм(образец 1) и 9,4 мм (образец 2). Каждая кривая на рисунках соответствует определенному значению электро­проводности а кристалла. Области значений s выбира­лись с таким расчетом, чтобы получить максимальные на данной частоте значения коэффициентов усиления волн в кристалле. На каждом из рисунков имеется по две тео­ретических кривых, соответствующих граничным (максимальному и минимальному) значениям электропроводности образца (рис. 3.20, а, 3.21, а — опыты с рэлеевскими волнами, рис. электропроводно­сти для данного типа волн в данном образце. Эти кривые нанесены тонкими сплошными линиями (чтобы не увели­чивать существенно размер рисунка, масштаб изменения отложен для них на правых осях ординат). На рис. 3.20 и 3.21 изображены кривые усиления шу­ма в образцах 1 и 2 соответственно при различных значе­ниях 3.20, б, 3.21, б — опыты с поперечными волнами). Под шумом здесь по­нимаются тепловые колебания решетки кристалла, уси­ленные дрейфовым полем (волны Дебая). Естественно, что шумы измерялись в полосе пропускания схемы (28—32 МГц).

Уровень шума N, отложенный на рисунках по осям ординат, представляет собой 20 lg eш/e0, εш — ЭДС развиваемая шумовым сигналом на приемнике; ε 0— некоторый постоянный уровень (ЭДС темнового сигнала поперечных волн в образце 1).


Страница: