Электродинамический принцип относительности
Рефераты >> Физика >> Электродинамический принцип относительности

Разрешим это уравнение, для чего сначала продифференцируем его по x2. Тогда получим уравнение

Полагая в этом последнем уравнении и, приходим к

дифференциальному уравнению

или совсем простому уравнению

Следовательно,

Подставив эту формулу для в приведенное выше продифференцированное функциональное уравнение. Получим

Следовательно,

Так как величины совершенно произвольны, то аргументы функций G в правой и левой частях могут принимать совершенно произвольные значения. Поэтому

а следовательно,

где - пока произвольные постоянные.

Определение констант Мы получили следующие формулы преобразования координат и времен мгновенного точечного события:

Найдем константы начнем с того, что выставим требование о согласовании начал отчетов координат и времени в обеих системах отсчета и .

Требование 1. Событие, имеющее координаты 0, 0 в системе отсчета , имеет координаты 0, 0 в системе отсчета , и наоборот.

Следовательно, в приведенных формулах и формулы преобразования приобретают следующий вид:

Приведенные формулы преобразования мы получили как следствия наших шести основных соотношений. В них входят пока не определенные нами величины и.

Подставив эти формулы преобразования обратно в исходные шесть соотношений, мы можем найти ограничения на константы и. Так, собственно говоря, и получается. Действительно, имеем равенства

Как видим, чтобы эти равенства выполнялись, необходимо потребовать, чтобы константы и были равны друг другу:

Таким образом, искомые формулы преобразования координат мгновенного точечного события имеют вид

где - пока не определенная константа .

Как и в случае преобразований Лоренца, воспользуемся тем, что у нас имеется произвол в выборе единиц измерения либо длинны, либо времени в обеих системах отсчета и . Чтобы фиксировать указанный произвол, выставим дополнительное требование.

Требование 2. Длина l движущегося в системе стержня, покоящегося в системе , ориентированного вдоль оси и имеющего в этой системе длину , т.е. .

Рассмотрим движущийся стержень, все время покоящийся в системе отсчета между точками от с координатами и .

Пусть в одинаковые локальные моменты времени в системе отсчета левый конец стержня совпал с точкой оси x, с координатой(событие A), (событие B). Тогда

Вычитая второе равенство из первого, с учетом условия получаем

и так как согласно требованию 2, то приходим к заключению, что

Итак, мы вывели с помощью исключительно кинематических рассуждений, аналогичных использованным Эйнштейном при выводе формул преобразований Лоренца, формулы преобразований Галилея:

4.13. Гипотеза эфира и гипотеза четырехмерного мира.

Подведем итог нашим рассуждениям. Исходя из условных в принципе процедур построения полей времени в «неподвижной» и «движущейся» системах отсчета, используя очевидные дополнительные требования о согласовании единиц измерения длинны и времени в обеих рассматриваемых системах отсчета, мы вывели как преобразования Лоренца , так и преобразования Галилея .

При этом мы следовали основным идеям кинематического рассуждения из работы Эйнштейна 1905 г. (усилив их только рассмотрением функциональных уравнений).

Таким образом, вывод Эйнштейна, сделанный им в работе 1905 г., о ложности ньютоновской концепции абсолютного времени Ньютона следует считать необоснованным. Также не обосновано и утверждение, что он якобы доказал, что светоносного эфира не существует, что электромагнитные волны существуют сами по себе без какой-либо среды (в отличие от всех других известных нам физических волн).


Страница: