Электродинамический принцип относительности
Три уравнения, в которые входят легко сопоставить с уравнениями Ньютона. Нужно только предположить, что теперь масса m материальной точки зависит от скорости по закону
а импульс движущейся материальной точки определяется формулой
где v - вектор мгновенной скорости материальной точки.
Четвертое уравнение, в которое входит , оказывается, выражает уравнение баланса кинетической энергии материальной точки. Чтобы в этом убедиться, умножим уравнения Минковского на и на -, соответственно и сложим. Получим тогда уравнение
Отсюда можно найти . Имеем
где - мгновенная мощность, развиваемая силой, действующей на рассматриваемую материальную точку. Таким образом,
и потому рассматриваемое четвертое уравнение примет вид :
Таким образом, величину
следует считать энергией движущейся материальной точки. Если , то приближенно получаем
Второе слагаемое есть классическая кинетическая энергия материальной точки
а первое слагаемое - так называемая "энергия покоя". Кинетической энергией материальной точки в релятивистской механике называют величину
Приведем еще одно важное соотношение, связывающее импульс и энергию релятивистской материальной точки. Имеем
так что имеем формулу
В заключение заметим, что описываемое релятивистское обобщение классической механики материальной точки сказалось полезным при применении к электронам и другим элементарным частицам, и, как показали эксперименты, очень хорошо описывают механические движения.
Вместе с тем, здесь следует отметить, что попытки релятивистского обобщения уравнений классической механики Ньютона для системы даже двух материальных точек в релятивистской механике не увенчались успехом, здесь она столкнулись с серьезными противоречиями и непреодолимыми трудностями.