Испытание материалов на прочность при ударе
Рефераты >> Физика >> Испытание материалов на прочность при ударе

(20)

Поскольку K имеет форму ((7) и (11)), где постоянная a дается выражением

(21)

то интегрирование (20) снова приводит к (19).

Рэлей критиковал вывод Дюпре [10]. Он считал, что рассмотрение работы од­но­родного расширения от состояния баланса когезионных и отталкивающих межмо­леку­лярных сил при учете только когезионных сил было необоснован­ным; прежде чем предпринять подобный шаг, следовало бы располагать луч­шим знанием вида сил от­талкивания.

Мы видим, что в этом выводе, как и в выводах Юнга, Лапласа и Гаусса, суще­ст­венным образом используется предположение о скачкообразном изменении плот­ности числа молекул вещества на границе раздела фаз. В то же время, чтобы прове­денные рассуждения описывали реальные явления в веществе, необходимо предпо­лагать, что радиус действия межмолекулярных сил в веществе много больше харак­терного рас­стояния между частицами. Но при этом предположении граница раздела двух фаз не может быть резкой — должен возникнуть непрерывный переходный профиль плотно­сти, иначе говоря, переходная зона[3].

Были предприняты попытки обобщить эти выводы на непрерывный переход­ный профиль. В частности, Пуассон, пытаясь пойти по такому пути, пришел к оши­бочному выводу, что при наличии переходного профиля поверхностное натяжение должно во­обще исчезнуть. Позже Максвелл показал ошибочность такого вывода.

Однако, само предположение о том, что радиус действия межмолекулярных сил в веществе много больше характерного расстояния между частицами не соответ­ствует экспериментальным данным. В действительности, эти расстояния одного по­рядка. По­этому механистическое рассмотрение в духе Лапласа является, говоря со­временным языком, теорией среднего поля. Таковой же является не описанная здесь теория Ван-дер-Ваальса, давшая знаменитое уравнение состояния реальных газов. Во всех этих случаях точный расчет требует учета корелляций между плотностями ко­личества час­тиц в различных точках. Это делает задачу очень сложной.

Теория капиллярности Гиббса.

Как часто бывает, термодинамическое описание оказывается более про­стым и бо­лее общим, не будучи ограниченным недостатками конкретных моде­лей.

Именно таким образом описал капиллярность Гиббс в 1878 г., по­строив чисто термоди­намическую теорию [12]. Эта теория стала неотъемлемой частью гиббсовской тер­модинамики. Теория капиллярности Гиббса, не опира­ясь непо­средственно на какие-либо механистические модели, лишена недостат­ков тео­рии Лапласа; она может по праву считаться первой детально развитой термоди­намической теорией поверхност­ных явлений.

Про теорию капиллярности Гиббса можно сказать, что она очень проста и очень сложна. Проста потому, что Гиббсу уда­лось найти метод, позволяющий полу­чить наи­более компакт­ные и изящные термодинамические соотношения, в равной мере приме­нимые к плоским и искривленным поверхностям. «Одной из основных задач теорети­ческого исследования в лю­бой области знания, — писал Гиббс, — яв­ляется установле­ние такой точки зрения, с которой объект исследо­вания прояв­ляется с наибольшей про­стотой» [13]. Такая точка зрения в тео­рии капиллярности Гиббса — это представление о разделяю­щих поверхностях. Ис­пользование наглядного гео­метрического образа раз­деляющей поверхности и введение избыточных величин по­зволило максимально просто описать свойства поверхностей и обойти вопрос о структуре и толщине поверхностного слоя, ко­торый во времена Гиббса был совер­шенно не изучен и до сих пор остается ре­шенным далеко не полностью. Избыточные величины Гиббса (адсорбция и дру­гие) за­висят от положения разделяющей поверх­ности, и последнее может быть также найдено из соображений максимальной про­стоты и удобства.

Разумно выбирать в каждом случае разделяющую по­верх­ность так, чтобы она была всюду перпендикулярна градиенту плотности. Если разделяющие по­верхности выбраны, то каждой фазе {l} (l = a, b, g) теперь соответ­ствует за­ни­маемый ей объем V{l}. Полный объем системы

Пусть — плотность количества молекул сорта j в [объемной] фазе {l}. То­гда полное число молекул сорта j в рассматриваемой системе равно

где — поверхностный избыток количества молекул сорта j (индекс {s} оз­начает surface - поверхность). Аналогичным образом определяются избытки других экстен­сив­ных физических величин. Очевидно, что в случае, например, плоской пленки про­порционален ее пло­щади A. Величина, определяемая как поверхностный избыток числа молекул сорта j на единицу площади раз­де­ляющей поверхности, называется адсорбцией молекул сорта j на этой поверхно­сти.

Гиббс использовал два основных положения разделяющей поверхности: та­кое, при котором адсорбция одного из компо­нентов равна нулю (сейчас эту поверх­ность на­зывают экви­молекулярной), и положение, для которого исчезает явная зави­симость по­верхностной энергии от кривизны поверхности (это поло­жение было на­звано Гиббсом поверхностью натяже­ния). Эквимолекулярной по­верхностью Гиббс пользовался для рассмотрения плоских жидких поверхно­стей (и поверхностей твер­дых тел), а поверхно­стью натяжения — для рас­смот­рения искривленных поверхно­стей. Для обоих положе­ний сокращается число пере­менных и достигается макси­мальная математическая простота.

Теперь о сложности теории Гиббса. Будучи очень простой в математиче­ском от­ношении, она все же трудна для восприя­тия; происходит это по не­скольким при­чинам. Во-первых, теорию капиллярности Гиббса невозможно по­нять в отрыве от всей гиб­бсовской термодинамики, в основе которой лежит весьма общий, дедуктив­ный метод. Большая общность теории всегда придает ей некоторую абстрактность, что, конечно, отражается на легкости восприятия. Во-вторых, сама теория капилляр­ности Гиббса есть обширная, но условная система, требующая единства восприятия без отвлечения от от­дельных ее положений. Дилетантский подход к изучению Гиб­бса просто невозможен. Наконец, немало­важным обстоятельством яв­ляется то, что вся упомянутая работа Гиб­бса напи­сана весьма конспективно и очень трудным язы­ком. Эта работа, по словам Рэ­лея, «слишком сжата и трудна не только для большин­ства, но, можно сказать, для всех читателей» [15]. По мнению Гугенгейма, «гораздо легче использовать формулы Гиббса, чем по­нимать их» [16].

Естественно, что использование формул Гиббса без их истинного понима­ния при­водило к появлению многочислен­ных ошибок в интерпретации и при­менении отдель­ных поло­жений теории капиллярности Гиббса. Много ошибок было свя­зано с непони­манием необходимости однозначного определе­ния поло­жения разделяющей поверхно­сти для получения правильного физического ре­зультата. Ошибки такого рода часто встречались при анализе зависимости по­верхностного натяжения от кри­визны поверх­ности; не избежал их даже один из «столпов» теории капиллярности — Баккер. Пример ошибок другого рода — не­правильная интерпретация хими­ческих по­тенциалов при рас­смотрении поверх­ностных явлений и внешних полей.


Страница: