Испытание материалов на прочность при ударе
(20)
Поскольку K имеет форму ((7) и (11)), где постоянная a дается выражением
(21)
то интегрирование (20) снова приводит к (19).
Рэлей критиковал вывод Дюпре [10]. Он считал, что рассмотрение работы однородного расширения от состояния баланса когезионных и отталкивающих межмолекулярных сил при учете только когезионных сил было необоснованным; прежде чем предпринять подобный шаг, следовало бы располагать лучшим знанием вида сил отталкивания.
Мы видим, что в этом выводе, как и в выводах Юнга, Лапласа и Гаусса, существенным образом используется предположение о скачкообразном изменении плотности числа молекул вещества на границе раздела фаз. В то же время, чтобы проведенные рассуждения описывали реальные явления в веществе, необходимо предполагать, что радиус действия межмолекулярных сил в веществе много больше характерного расстояния между частицами. Но при этом предположении граница раздела двух фаз не может быть резкой — должен возникнуть непрерывный переходный профиль плотности, иначе говоря, переходная зона[3].
Были предприняты попытки обобщить эти выводы на непрерывный переходный профиль. В частности, Пуассон, пытаясь пойти по такому пути, пришел к ошибочному выводу, что при наличии переходного профиля поверхностное натяжение должно вообще исчезнуть. Позже Максвелл показал ошибочность такого вывода.
Однако, само предположение о том, что радиус действия межмолекулярных сил в веществе много больше характерного расстояния между частицами не соответствует экспериментальным данным. В действительности, эти расстояния одного порядка. Поэтому механистическое рассмотрение в духе Лапласа является, говоря современным языком, теорией среднего поля. Таковой же является не описанная здесь теория Ван-дер-Ваальса, давшая знаменитое уравнение состояния реальных газов. Во всех этих случаях точный расчет требует учета корелляций между плотностями количества частиц в различных точках. Это делает задачу очень сложной.
Теория капиллярности Гиббса.
Как часто бывает, термодинамическое описание оказывается более простым и более общим, не будучи ограниченным недостатками конкретных моделей.
Именно таким образом описал капиллярность Гиббс в 1878 г., построив чисто термодинамическую теорию [12]. Эта теория стала неотъемлемой частью гиббсовской термодинамики. Теория капиллярности Гиббса, не опираясь непосредственно на какие-либо механистические модели, лишена недостатков теории Лапласа; она может по праву считаться первой детально развитой термодинамической теорией поверхностных явлений.
Про теорию капиллярности Гиббса можно сказать, что она очень проста и очень сложна. Проста потому, что Гиббсу удалось найти метод, позволяющий получить наиболее компактные и изящные термодинамические соотношения, в равной мере применимые к плоским и искривленным поверхностям. «Одной из основных задач теоретического исследования в любой области знания, — писал Гиббс, — является установление такой точки зрения, с которой объект исследования проявляется с наибольшей простотой» [13]. Такая точка зрения в теории капиллярности Гиббса — это представление о разделяющих поверхностях. Использование наглядного геометрического образа разделяющей поверхности и введение избыточных величин позволило максимально просто описать свойства поверхностей и обойти вопрос о структуре и толщине поверхностного слоя, который во времена Гиббса был совершенно не изучен и до сих пор остается решенным далеко не полностью. Избыточные величины Гиббса (адсорбция и другие) зависят от положения разделяющей поверхности, и последнее может быть также найдено из соображений максимальной простоты и удобства.
Разумно выбирать в каждом случае разделяющую поверхность так, чтобы она была всюду перпендикулярна градиенту плотности. Если разделяющие поверхности выбраны, то каждой фазе {l} (l = a, b, g) теперь соответствует занимаемый ей объем V{l}. Полный объем системы
Пусть — плотность количества молекул сорта j в [объемной] фазе {l}. Тогда полное число молекул сорта j в рассматриваемой системе равно
где — поверхностный избыток количества молекул сорта j (индекс {s} означает surface - поверхность). Аналогичным образом определяются избытки других экстенсивных физических величин. Очевидно, что в случае, например, плоской пленки пропорционален ее площади A. Величина, определяемая как поверхностный избыток числа молекул сорта j на единицу площади разделяющей поверхности, называется адсорбцией молекул сорта j на этой поверхности.
Гиббс использовал два основных положения разделяющей поверхности: такое, при котором адсорбция одного из компонентов равна нулю (сейчас эту поверхность называют эквимолекулярной), и положение, для которого исчезает явная зависимость поверхностной энергии от кривизны поверхности (это положение было названо Гиббсом поверхностью натяжения). Эквимолекулярной поверхностью Гиббс пользовался для рассмотрения плоских жидких поверхностей (и поверхностей твердых тел), а поверхностью натяжения — для рассмотрения искривленных поверхностей. Для обоих положений сокращается число переменных и достигается максимальная математическая простота.
Теперь о сложности теории Гиббса. Будучи очень простой в математическом отношении, она все же трудна для восприятия; происходит это по нескольким причинам. Во-первых, теорию капиллярности Гиббса невозможно понять в отрыве от всей гиббсовской термодинамики, в основе которой лежит весьма общий, дедуктивный метод. Большая общность теории всегда придает ей некоторую абстрактность, что, конечно, отражается на легкости восприятия. Во-вторых, сама теория капиллярности Гиббса есть обширная, но условная система, требующая единства восприятия без отвлечения от отдельных ее положений. Дилетантский подход к изучению Гиббса просто невозможен. Наконец, немаловажным обстоятельством является то, что вся упомянутая работа Гиббса написана весьма конспективно и очень трудным языком. Эта работа, по словам Рэлея, «слишком сжата и трудна не только для большинства, но, можно сказать, для всех читателей» [15]. По мнению Гугенгейма, «гораздо легче использовать формулы Гиббса, чем понимать их» [16].
Естественно, что использование формул Гиббса без их истинного понимания приводило к появлению многочисленных ошибок в интерпретации и применении отдельных положений теории капиллярности Гиббса. Много ошибок было связано с непониманием необходимости однозначного определения положения разделяющей поверхности для получения правильного физического результата. Ошибки такого рода часто встречались при анализе зависимости поверхностного натяжения от кривизны поверхности; не избежал их даже один из «столпов» теории капиллярности — Баккер. Пример ошибок другого рода — неправильная интерпретация химических потенциалов при рассмотрении поверхностных явлений и внешних полей.