Молния - газовый разряд в природных условиях
Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию. Минимальное значение такой энергии называется энергией ионизации молекулы (атома), ее значение для атомов различных веществ лежат в пределах 425эВ.
Одновременно с процессом ионизации газа всегда идет и обратный процесс – процесс рекомбинации: положительные и отрицательные ионы и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации. В результате рекомбинации проводимость газа пропадает или возвращается к своему исходному значению.
Как говорилось выше, для отрыва электрона от атома (ионизация атома) необходима затрата определенной энергии. При рекомбинации положительного иона и электрона эта энергия, напротив, освобождается. Чаще всего она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации также будет большим, и свечение рекомбинации может быть большим, и свечение рекомбинации может быть очень сильным.
Ионизация под действием внешнего ионизатора принимается во внимание только в случае сравнительно слабых электрических полей, когда кинетическая энергия eEL, накопленная электроном (или ионом) на длине свободного пробега L меньше энергии ионизации Ei
eEL<Ei
и, следовательно, при столкновении с нейтральными частицами электроны лишь изменяют направление движения (упругое рассеяние).
Помимо данной ионизации возможна ионизация электронными ударами.
3.2 Ионизация электронными ударами.
Данный процесс заключается в том, что свободный движущийся электрон, обладающий достаточной кинетической энергией при соударении с нейтральным атомом выбивает один (или несколько) из атомных электронов. В результате этого нейтральный атом превращается в положительный ион, (который также может ионизировать газ) и, кроме первичного, появляются новые электроны, которые ионизируют еще атомы, Таким образом, число электронов будет лавинообразно нарастать, этот процесс называется электронной лавиной. Этот вид ионизации наблюдается при сильных полях, когда
eEL<Ei .
Для количественной характеристики ионизирующей способности электронов и ионов Таунсенд (1868 – 1957) ввел два «коэффициента объемной ионизации» и . определяется как среднее число ионов одного знака, производимое электроном на единице длины своего пути. Такой же смысл имеет коэффициент , характеризующий ионизующую способность положительных ионов. Коэффициент ионизации электронами значительно превосходит коэффициент ионизации положительными ионами .
Следующий классический опыт Таунсенда доказывает это утверждение.
Опыт: Берется Ионизационная камера в виде цилиндрического конденсатора, внутренним электродом которого служит тонкая металлическая нить (рис. 1). Между нитью и наружным цилиндром конденсатора прикидывается разность потенциалов V, достаточная для того, чтобы в объеме камеры происходила ударная ионизация газа. Последняя практически будет происходить лишь вблизи нити, где электрическое поле очень сильное, Допустим, что на нить подан положительный потенциал. Тогда к нити устремятся электроны и будут вблизи нее ионизовать газ. Положительные же ионы, устремляясь к наружному цилиндру, пройдут через область слабого поля и практически никакой ионизации не вызовут. Изменим теперь полярность напряжения V не меняя его величину. Тогда роли положительных и отрицательных ионов поменяются местами. К нити устремятся положительные ионы, и ионизация в камере будет возбуждаться практически только ими. Опыт показывает, что в первом случае ионизационный ток больше и быстрее растет с напряжением V, чем во втором (рис. 2 кривая I относится к случаю когда внутренний электрод положителен, а кривая II – к случаю когда он отрицателен).
Таким образом, главную роль играет ионизация ударами электронов, по сравнению с которой ионизацией положительными ионами во многих случаях можно пренебречь.
3.3 Самостоятельный и несамостоятельный разряд.
Прежде, чем перейти к рассмотрению теории Таунсенда дадим понятие самостоятельного и несамостоятельного разряда.
Разряд, существующий только при действии внешнего ионизатора, называется несамостоятельным разрядом.
Если ионы, необходимые для поддержания электропроводимости газа, создается самим разрядом (в результате процессов происходящих в разряде), такой газовый разряд называется самостоятельным.
Теория Таусенда прохождения электрического тока через газ.
В ней учитывается ударная ионизация атомов и молекул газа электронами и положительными ионами. Для простоты электроды разрядной трубки будем считать плоскими. Рекомбинацией ионов и электронов пренебрежем, предполагая, что за время прохождения между катодом и анодом эти частицы рекомбинировать не успевают. Кроме того, ограничимся стационарным режимом, когда все величины, характеризующие разряд, не зависят от времени. Поместим начало координат на поверхность катода К, направив ось Х в сторону анода А. Пусть ne(x) и np(x) – концентрации электронов и положительных ионов, а ve и vp – их средние дрейфовые скорости. Возьмем в газе бесконечно тонкий плоский слой. Через эту площадку слева в слой ежесекундно входит ne(x) vp(x) электронов, а справа выходит ne(x+dx) ve(x+dx). В объеме dx слоя из-за ионизации электронами ежесекундно возникает ne vedx электронов и столько же положительных ионов, Аналогично из-за ионизации положительными ионами образуется npvpdx электронов и столько же положительных ионов. Наконец, может существовать внешний источник ионизации, создающий ежесекундно q пар ионов в единице объема газа. А так как в случае стационарности процесса число электронов в слое не меняется, то должно выполнятся соотношение
ne(x)ve(x)-ne(x+dx)ve(x+dx) + (neve + npvp)dx +qdx=0
Аналогично, для положительных ионов, движущихся от анода к катоду,
np(x+dx)vp(x+dx) – np(x)vp(x) + (neve + npvp)dx +qdx=0
Заменяя разности соответствующими дифференциалами и сократив на dx, получим