Оптические квантовые генераторы
Рефераты >> Физика >> Оптические квантовые генераторы

Исследования показывают, что усиление активной среды в гелий-неоновом ОКГ невелико и составляет несколько процентов на метр (например, для перехода 3s о -2рц с Л, = 0,6328 стоя оно не превышает А% на метр, для перехода 2Sn -2рц с Д= I, 152 мкм - 12%). Поэтому в резонаторах гелий-неонового ОКГ прихо­дится использовать зеркала с коэффициентом отражения, близким к единице и отличающимся от нее на доли и единицы процентов. При-меняются главным образом зеркала с интерференционными покрыти­ями. Малый коэффициент усиления активной среды налагает жест­кие требования на точность юстировки зеркал резонатора. Так, в случае резонатора с плоскими зеркалами непараллельность их все­го в несколько угловых секунд существенно сказывается на вы­ходной мощности. Значительно меньше зависят от юстировки резо-иаторы со сферическими зеркалами. Обычно поворот сферических зеркал от оптимального положения в пределах нескольких угловых минут мало влияет на величину выходной мощности ОКГ. Поэтому в болышнстве газовых ОКГ используют резонаторы со сферическими зеркалами.

Для возбуждения газовой смеси используют либо разряд на постоянном токе, либо высокочастотный разряд. В первом случае в газоразрядную трубку, как показано на рис.80, вводят электроды - катод Щ, анод ('?). Напряжение питания со­ставляет в зависимости от длины разрядного промежут­ка величину от нескольких сотен вольт до двух-трех киловольт,ток разряда - не­сколько десятков миллиампер, Высокочастотный разряд воз­буждается радиочастотным генератором с мощностью от десятков до сотен ватт, на­пряжение от которого подводится к внешним кольцевым электро­дам, накладываемым на трубку.

Мощность генерации ОКГ зависит от парциальных давлений ге­лия и неона, размеров газоразрядной трубки, от тока (мощности) разряда. На рис.81 представлена зависимость мощности генерации р от давления гелия при различных давлениях неона.Мощность генерации растет с увеличением парциального давления гелия и неона, достигая максимума при общем давлении,, близком к 100 Па, и затем уменьшается. Рост мощности с давлением гелия объясня­ется увеличением концентрации его атомов, находящихся в мета-стабильном состоянии, что благодаря процессу резонансной пере­дачи энергии атомам неона, описываемому формулой (123), ведет к росту инверсии населенностей рабочей среды и, следовательно, мощности генерации. При больших давлениях газовой смеси время свободного пробега электронов снижается настолько, что они не успевают достаточно ускориться в электрическом поле и приобре­сти необходимую энергию. Поэтому эффективность возбуждения ато-мов уменьшается. Мощность генерации существенно зависит от со­отношения парциальных давлений гелия и неона в газовой смеси. Как показывают исследования, для генерации на переходе 3$^ --— 2/Dn с /I = 0,6328 мкм оптимальное соотношение для неона и • гелия равно I : 5, а для перехода 25^—2^ с Л-= 1,15 мкм оно равно I : 10 при общем давлении смеси около 100 Па.

Важным вопросом получения максимальной выходной мощности является выбор оптимального диаметра газоразрядной трубки. С одной стороны, увеличение диаметра трубки, а значит, и объема активной среды должно приводить к росту мощности генерации. С другой - чрезмерное увеличение диаметра трубки ведет к умень­шению инверсии населенностей рабочей пары уровней. Это связано с тем, что в процессе генерации опустошение нижнего рабочего уровня 2рь происходит посредством каскадных переходов на ме-тастабильный уровень Is , с которого атомы возвращаются в ос­новное состояние, главным образом под влиянием соударений со стенками трубки. Чем больше радиус трубки, тем больше время диффузии атомов неона к стенкам, а значит, время их жизни в состоянии is . В результате на уровне is скашиваются атомы, откуда они в результате электронного возбуждения переходят в состояние 2р и Зр , уменьиая инверсию населенностей. Экспери­ментально установлено, что для трубок длиной I м оптимальный диаметр составляет 7-8 мм. Для трубок меньшей длины он полу­чается соответственно меньше.

На рис.82 приведена типич­ная для гелий-неонового ОКГ за­висимость выходной мощности

^вых от тока РварВД® I (мощ­ности разряда). Характер этой

зависимости полностью определя­ется механизмом возбуждения ге­лий-неоновой смеси. С увеличе­нием разрядного тока возрастает концентрация электронов в плаз­ме и увеличиваются населенности всех возбужденных состояний ато­мов гелия и неона, особенно 2s-и 35-состояний, благодаря про­цессу, описываемому формулами

(123). Поэтому мощность генера­ции с увеличением тока растет. По мере дальнейшего возрастания тока рост инверсии из-за интенсивного заселения нижних рабочих

уровней 2р и Зр в результате процесса ступенчатого возбуж­дения через метаотабилъный уровень Is, описываемого формулами

(124), начинает замедляться. При больших разрядных токах (> 100 мА) концентрация атомов неона в долгоживущем метаста-бильном состоянии is становится настолько высокой, что сту­пенчатое заселение уровней 2р и Зр приводит к уменьшению инверсной заселенности рабочей пары уровней, и мощность гене­рации падает.

Оптимальная величина тока разряда для разных ОКГ находит­ся в диапазоне 20*80 мА. Исследования показывают, что в опти­мальном режиме удельная мощность (мощность с единицы длины раз­рядной трубки) генерации составляет 30 мВг/м для перехода 3Sn-- 2pq ( Л- = 0,6328 мкм), 50 мВт/м для перехода 25g -2рц (Л, = = 1,152 мкм) и 100 мВт/м для перехода За^ - Зрц ( Л/ =3,394мий).

Коэффициент полезного действия гелий-неонового ОКГ состав­ляет доли процента. Столь низкий КПД объясняется малой кванто­вой эффективностью рабочих переходов атомов неона и несовер­шенством процесса возбуждения их. Квантовая эффективность ра­бочего перехода - это отношение энергии излучаемого фотона к энергии, которая сообщается частице для возбуждения ее до верхнего рабочего уровня. Иными словами, квантовая эффективность по­казывает , какая доля энергии,затраченная на возбуждение частиц, переходит в энергию генерации. Очевидно, что квантовая эффек­тивность рабочего перехода определяет теоретическое предельное значение КПД ОКГ. Для атомэв неона энергия верхнего рабочего уровня составляет 20 аВ, а энергия фотона генерации с Д=0,6328 мкм равна 2 эВ. Поэтому квантовая эффективность т?д„ « 10?. Та­ким образом, в когерентное излучение может быть преобразовано лишь 10% общей энергии, сообщенной атому.

С другой стороны, в процессе возбуждения атома Afe до верх­него рабочего уровня эффективно могут участвовать только те электроны, энергия которыг превышает 20 эВ. Так как в гелий-неоновой плазме наиболее аероятная энергия электронов состав­ляет 6+8 аВ, то для возбуждения верхнего рабочего уровня ис­пользуется лишь небольшая часть энергии, затрачиваемой на под­держание газового разряда. Поатому КПД гелий-неонового ОКГ зна­чительно меньше квантовпй эффективности и составляет доли про­цента .


Страница: