Специфика физики микрообъектов
Рефераты >> Физика >> Специфика физики микрообъектов

Универсальные динамические переменные. При переходе от макрообъектов к микрообъектам следует ожидать качественно новых ответов на вопросы: какими динамическими переменными описывается состояние объекта? как описывается его движение? Ответы на эти вопросы в существенной мере раскрывают специфику физики микрообъектов.

В классической физике используются законы сохранения энергии, импульса, момента импульса. Как известно, эти законы являются следствиями определенных свойств симметрии пространства и времени. Так, закон сохранения энергии – следствие однородности времени (следствие независимости протекания физических процессов от выбора того или иного момента в качестве начала отсчета времени); закон сохранения импульса – следствие однородности пространства (следствие того, что все точки в пространстве физически равноправны); закон сохранения момента импульса – следствие изотропности пространства (следствие того, что все направления в пространстве физически равноправны). Для пояснения свойств симметрии пространства и времени заметим, что благодаря этим свойствам, например, законы Кеплера для движения планет вокруг Солнца не зависят от положения Солнца в галактике, от ориентации в пространстве плоскости движения планеты, а также от того, в каком именно столетии открыты эти законы. Связь между свойствами симметрии пространства и времени и соответствующими законами сохранения означает, что энергия, импульс или момент могут рассматриваться как интегралы движения, сохранение которых есть следствие соответственно однородности времени, однородности и изоторопности пространства.

Отсутствие каких-либо экспериментальных указаний на нарушения в микроявлениях отмеченных свыше свойств симметрии пространства и времени позволяет заключить, что такие динамические переменные, как энергия, импульс, момент импульса, должны сохранять смысл и в применении к микрообъектам. Иначе говоря, связь этих динамических переменных с фундаментальными свойствами симметрии пространства и времени превращает их в универсальные переменные, т.е. переменные, имеющие «хождение» при рассмотрении самых различных явлений из самых разных областей физики.

Однако при переносе понятий энергии, импульса и момента импульса из классической физики в квантовую механику необходимо учитывать специфику микрообъектов. Вспомним в связи с этим известные выражения для энергии (Е), импульса (р) и момента импульса (М) классического объекта, имеющего массу m, координату r, скорость v:

Е = mv2/2 + U(r), р = mv, M = m(r . v).

Исключая скорость, получаем отсюда соотношения, связывающие энергию, импульс и момент импульса классического объекта:

E = p2/2m + U(r), M = (r . p).

Если обратится к микрообъекту, то надо отметить, что вышеприведенные соотношения здесь не годятся. Иначе говоря, привычные классические связи между интегралами движения при переходе к микрообъектам становятся непригодными. Это есть первое качественно новое обстоятельство.

Для рассмотрения других качественно новых обстоятельств необходимо обратится к двум основополагающим идеям квантовой механики – идее квантования физических величин и идее корпускулярно-волнового дуализма.

2. Две основополагающие идеи квантовой механики.

Идея квантования (дискретности). Сущность идеи квантования состоит в том, что некоторые физические величины, относящиеся к микрообъекту, могут в соответствующих условиях принимать только какие-то вполне определенные, дискретные значения. Об этих величинах говорят, что они квантуются.

Так, квантуется энергия любого микрообъекта, находящегося в связанном состоянии, например энергия электрона в атоме. Энергия же свободно движущегося микрообъекта не квантуется.

Предположим, что рассматривается энергия электрона в атоме. Дискретному набору значений энергии электрона соответствует система так называемых энергетических уровней. Рассмотрим два энергетических уровня: Е1 и Е2, как показано на рисунке 1 (по вертикальной оси откладываются значения энергии электрона). Электрон может иметь энергию Е1 или энергию Е2 и не может

Е2 иметь какую-либо «промежуточную» энергию –

все значения энергии Е, удовлетворяющие

неравенствам Е1 < E < E2, для него запрещены.

Е1 рис.1 Примечательно, что дискретность энергии

отнюдь не означает, что электрон «осужден» вечно находится в исходном энергетическом состоянии (например, на уровне Е1). Электрон может перейти на другой энергетический уровень (уровень Е2 или какой-либо другой), получив или испустив соответствующее количество энергии. Такой переход называется квантовым переходом.

Квантомеханическая идея дискретности имеет довольно длинную предысторию. Еще в конце XIX в. Было установлено, что спектры излучения свободных атомов являются линейчатыми (состоят из набора линий), содержат определенные для каждого элемента линии, которые образуют упорядоченные группы (серии). В 1885 г. было обнаружено, что атомарный водород дает излучение с частотами ωn (речь идет о циклических частотах ω, связанные с обычными частотами ν соотношением ω = 2πν), которые можно описать формулой

ωn = 2πcR( 1/4 - 1/n2),

где n – целые числа 3, 4, 5, .; c – скорость света, R – постоянная Ридберга (R=1,097 . 107 м-1). Вышеприведенная формула установлена Бальмером; поэтому принято называть совокупность частот, описываемую этой формулой, серией Бальмера. Частоты серии Бальмера попадают в область видимого спектра. Позднее (в начале XX в.) были открыты дополнительные серии частот излучения атомарного водорода, попадающие в ультрафиолетовую и инфракрасную части спектра. Закономерности в структуре этих серий оказались тождественными с закономерностями в структуре серии Бальмера, что позволило обобщить формулу, записав ее в виде

ωn = 2πcR( 1/k2 - 1/n2).

Число k фиксирует серию, причем в каждой серии n>k; k=2 дает серию Бальмера, k=1 – серию Лаймана (ультрафиолетовые частоты); k=3 – серию Пашена (инфракрасные частоты) и т.д.

Закономерность в структуре серий была обнаружена не только в спектре атомарного водорода, но также и в спектрах других атомов. Она определенно указывала на возможность каких-то обобщений. В качестве такого обобщения Ритц выдвинул в 1908 г. свой комбинационный принцип: «Если даны формулы серий и известны входящие в них постоянные, то путем комбинации в виде сумм и разностей можно новую открытую линию в спектре вывести из ранее известных». В применении к водороду этот принцип следует понимать так. Составим для разных чисел n так называемые спектральные термы:

T(n) = 2πcR/n2.

Тогда каждая наблюдаемая в спектре водорода частота может быть выражена в виде комбинации каких-то двух спектральных термов. Комбинируя спектральные термы, можно предсказывать различные частоты.


Страница: