Специфика физики микрообъектов
Рефераты >> Физика >> Специфика физики микрообъектов

Приведенные примеры явно демонстрируют преувеличение волнового аспекта. Отождествление находящегося в потенциальной яме электрона с классической волной внутри некоего «резонатора» неправомерно. Образ электронной волны в «резонаторе» есть такое же упрощение, как и образ электрона-шарика, движущегося по классической орбите. Следует знать, что под термином «дебройлевская волна» отнюдь не скрывается какая-то классическая волна. Это всего лишь отражение в наших представлениях факта наличия у микрообъекта волновых свойств.

Попытки представить микрообъект как симбиоз корпускулы и волны. Если микрообъект не является ни корпускулой, ни волной, то, может быть, он представляет собой некий симбиоз корпускулы и волны? Предпринимались различные попытки модельно изобразить такой симбиоз и тем самым наглядно смоделировать корпускулярно-волновой дуализм. Одна из таких попыток связана с представлением микрообъекта как волнового образования, ограниченного в пространстве и во времени. Это может быть волновой пакет, о котором мы уже говорили. Это может быть и просто «обрывок» волны, называемый обычно волновым цугом. Другая попытка связана с использованием модели волны-пилота, согласно которой микрообъект есть некое «соединение» корпускулярной «сердцевины» с некоторой волной, управляющей движением «сердцевины».

Один из вариантов модели волны-пилота рассмотрен в книге Д. Бома: «Сначала постулируем, что с частицей (например, электроном) связано «тело», занимающее малую область пространства; в большинстве применений на ядерном уровне его можно рассматривать как материальную точку. В качестве следующего шага предположим, что с «телом» связана волна, без которой тело не обнаруживается. Эта волна представляет собой колебания некоего нового поля (ψ-поля), до некоторой степени похожего на гравитационное и электромагнитное, но имеющее свои собственные характерные черты. Далее предполагаем, что ψ-поле и «тело» взаимодействуют. Это взаимодействие должно будет приводить к тому, что «тело» будет стремится находится в области, где интенсивность ψ-поля имеет наибольшее значение. Осуществлению этой тенденции движения электрона мешают неупорядоченные движения, испытываемые телом, которые могли бы возникнуть, например, в следствие флуктуаций самого ψ-поля. Флуктуации вызывают тенденцию блуждания «тела» по всему доступному ему пространству. Но осуществлению этой тенденции мешает наличие «квантовой силы» которая устремляет «тело» в области, где интенсивность ψ-поля наиболее высока. В итоге получим какое-то распределение «тел», преобладающее в областях с наибольшей интенсивностью ψ-поля.»

Не исключено, что подобные модели могут показаться с первого взгляда привлекательными – хотя бы в силу своей наглядности. Однако необходимо сразу же подчеркнуть – все эти модели не состоятельны. Мы не будем выявлять, в чем именно заключается несостоятельность рассмотренной модели волны-пилота; отметим лишь громоздкость этой модели, использующей такие искусственные понятия, как «ψ-поле», которое «до некоторой степени походе на гравитационное и электромагнитное», или «квантовая сила», отражающая взаимодействие некоего «тела» с ψ-полем. Однако несостоятельность подобных моделей объясняется не частными, а глубокими, принципиальными причинами. Следует заранее признать безуспешной всякую попытку буквального толкования корпускулярно-волнового дуализма, всякую попытку каким-то образом смоделировать симбиоз корпускулы и волны. Микрообъект не является симбиозом корпускулы и волны.

Как следует понимать корпускулярно-волновой дуализм? В настоящее время корпускулярно-волновой дуализм понимают как потенциальную способность микрообъекта проявлять различные свои свойства в зависимости от тех или иных внешних условий, в частности, условий наблюдения. Как писал Фок, «у атомных объектов в одних условиях выступают на передний план волновые свойства, а в других – корпускулярные; возможны и такие условия, когда и те, и другие свойства выступают одновременно. Можно показать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как частица, либо как волна, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна-частица. Всякое иное, более буквальное понимание этого дуализма в виде какой-либо модели неправильно.»

Приведем простейший пример. Пусть пучок электронов проходит сквозь экран с щелями и затем попадает на экран-детектор. При прохождении через щели электроны реализуют свои волновые свойства, что обуславливает характерное для интерференции распределение электронов за щелями. При попадании же на экран-детектор электроны реализуют свои корпускулярные свойства – каждый из них регистрируется в некоторой точке экрана. Можно сказать, что электрон проходит сквозь щель как волна, а регистрируется на экране как частица.

В связи с этим говорят при одних обстоятельствах, что «микрообъект есть волна», а при других – «микрообъект есть частица». Такая трактовка корпускулярно-волнового дуализма неправильна. Независимо ни от каких обстоятельств микрообъект не является ни волной, ни частицей, ни даже симбиозом волны и частицы. Это есть некий весьма специфический объект, способный в зависимости от обстоятельств проявлять в той или иной мере корпускулярные и волновые свойства. Понимание корпускулярно-волнового дуализма как потенциальной способности микрообъекта проявлять в различных внешних условиях различные свойства есть единственно правильное понимание. Отсюда, в частности, следует вывод: наглядная модель микрообъекта принципиально невозможна.

Электрон в атоме. Отсутствие наглядной модели микрообъекта отнюдь не исключает возможности использования условных образов, вполне пригодных для представления микрообъекта в тех или иных условиях. В качестве примера рассмотрим электрон в атоме.

Напомним, что состояние электрона в атоме описывается набором квантовых чисел: n, l, m, σ. Данное состояние характеризуется определенной энергией, которая в частном случае атома водорода, зависит только от числа n, а в более общем случае – от чисел n и l. Электрон в атоме пространственно делокализован – его координаты имеют неопределенность порядка размеров атома. Обычно при рассмотрении электрона в атоме вводят представление о так называемом электронном облаке, которое можно интерпретировать в данном случае как условный образ электрона. Форма и эффективные размеры электронного облака зависят от квантовых чисел n, l, m и, следовательно, меняются от одного состояния электрона в атоме к другому.

Чтобы описать размеры и форму электронного облака, вводят некоторую функцию

unlm (r, θ, φ) = vnl (r) Zlm (θ, φ),

где r, θ, φ – сферические координаты электрона. Функцию unlm интерпретируют следующим образом: unlm (r, θ, φ) dV есть вероятность обнаружить в элементе объема dV вблизи точки (r, θ, φ) электрон, находящийся в состоянии с квантовыми числами n, l, m. Иначе говоря, unlm (r, θ, φ) имеет смысл соответствующей плотности вероятности обнаружения электрона. Напомним, что dV = r2drdΩ, где dΩ = sin θdθdφ – элемент телесного угла. Функция


Страница: