Страница
7
Возникающее характеристическое излучение регистрируется с помощью рентгеноспектральной аппаратуры. Диаметр электронного зонда может изменяться от 360 до 0,5 мкм, а размер просматриваемой площадки представляет собой квадрат со стороной 360, 180, 90 или 45 мкм. В одном из приборов такого типа скорость анализа по одному химическому элементу соответствует движению зонда 8 или 96 мкм/мин (при механическом перемещении объекта). Анализировать можно все элементы периодической системы элементов Менделеева, легких (от атомного номера 11 - натрия).минимальный объем вещества, поддающегося количественному анализу, составляет 0,1 мкг. С помощью микрорентгеновского анализатора получают распределение физико-химического состава вдоль исследуемой поверхности.
В СССР серийно выпускается (выпускался) микрорентгеновский анализатор типа МАР-1 (диаметр зонда около 1 мкм, наименьшая анализируемая площадь 1мкм2). Приборы такого вида находят применение в электронной промышленности и в других областях науки и техники.
Читатель, видимо, обратил внимание на тот факт, что в электронных микроскопах не достигается разрешающая способность, предсказываемая теорией. В чем же дело? Вспомним, что в формировании изображения в электронных микроскопах важную роль играют элементы электронной оптики, позволяющие осуществлять управление электронными пучками. Этим элементам — электронным линзам свойственны различного рода отклонения от идеального (требуемого расчетом) распределения электрических и магнитных полей. Положение здесь во многом аналогично ограничениям в оптической микроскопии, связанным с неточностью изготовления оптических линз, зеркал и других элементов. Кроме того, ряд трудностей связан с особенностями изготовления и работы источников электронных потоков (катодов), а также с проблемой создания потоков, в которых электроны мало отличаются по скоростям. В соответствии с этими фактами, действующими в реальных условиях, различают определённые виды искажений в электронных микроскопах, используя при этом терминологию, заимствованную из световой оптики.
Основными видами искажений электронных линз в просвечивающих микроскопах являются сферическая и хроматическая аберрации, а также дифракция и приосевой астигматизм. Не останавливаясь на происхождении различных видов искажений, связанных с нарушениями симметрии полей и взаимным расположением элементов электронной оптики, упомянем лишь о хроматической аберрации. Последний вид искажений аналогичен возникновению окрашенных изображений в простых биноклях и лупах. Использование спектрально чистого монохроматического света в оптике (вместо белого) устраняет этот вид искажений. Аналогично этому в электронной микроскопии используют по возможности пучки электронов, скорости которых отличаются мало (вспомним соотношение l=h/(m*v) äëÿ ýëåêòðîíà!). Этого достигают применением высокостабильных источников электрического питания.
Близким «родственником» электронного микроскопа является электронограф ¾ прибор, использующий явление дифракции электронов, той самой дифракции, которая в своё время подтвердила наличие волновых свойств у электронов и ставит в наши дни предел разрешения в электронном микроскопе. В случае электронов объектами, в которых может происходить дифракция на периодической структуре (аналогичной объёмной дифракционной решётке в оптике), служат кристаллические структуры. Известно, что в кристаллах атомы расположены в строгом геометрическом порядке на расстояниях порядка единиц ангстрем. Особенно правильно это расположение в так называемых монокристаллах. При взаимодействии электронов с такими структурами возникает рассеяние электронов в преимущественных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атомной структуре вещества. В современных условиях электронография широко применяется при исследованиях не только твёрдых, но и жидких, газообразных тел. О виде получаемых электронограмм можно судить по фотографиям (см. рис.6).
Рис. 6. Электорнограмма высокого разрешения (окись цинка):
вверху ¾ электронограмма; внизу ¾ увеличенное изображение участка А.
В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых электронных микроскопах предусмотрена возможность работы в режиме электронографии.
Следует заметить, что с точки зрения физики получение электронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действительно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгеновских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.
Особенности работы с электронным микроскопом.
Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, например, в биологических исследованиях находят применения «сверхтонкие ножи» - микротомы, позволяющие получать срезы биологических объектов толщиной менее 1 мкм.
Главные особенности методики электронной микроскопии определяются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых могут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объектов не может превышать 200 А°(для неорганических веществ) и 1000 А° (для органических). Биологические объекты в большинстве случаев приходится контрастировать, т.е. «окрашивать» (солями тяжелых металлов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) - водород, углерод, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А°. Без контрастирования при электронно-микроскопических исследованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Использование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул) ¾ см., например, рис. 7.