Физика нейтрино
Рефераты >> Физика >> Физика нейтрино

(p + e- n + ). (6)

Аргон-37 распадается со временем жизни около 30 дней, превращаясь в хлор-37 и излучая нейтрино.

Обратная реакция (5) представляет собой превращение нейтрона в ядре хлора-37 в протон опять-таки под действием нейтрино + n p + e-. А в ядерном реакторе при распаде осколков генерируются антинейтрино - частицы, сопутствующие электрону n p + e- + . Поэтому процесс (5) может идти с полной вероятностью только в случае тождественности нейтрино и антинейтрино.

Эксперименты были поставлены группой американских физиков под ру- ководством Р. Дэвиса. Они проводились сначала на Брукхейвенском реакторе (1955 г.), затем на реакторе в Саванна-Ривер (1956-1959 гг.).

Схема опыта состояла в следующем. Бак, содержащий несколько кубо- метров перхлорэтилена (C2Cl4), помещался под землей недалеко от рабо- тающего реактора. В него предварительно вводился 1 см3 обычного аргона. Газ этот в дальнейшем мог служить носителем, образующихся радиоактивных атомов 37Ar.

Один, иногда два месяца жидкость выдерживалась под нейтринным об- лучением для накопления аргона-37, а затем начиналась процедура его извлечения. В течение нескольких часов через объем бака пропускался гелий. Он в виде мелких пузырьков проходил через жидкость и "вымывал" из нее атомы аргона. Затем гелий поступал в ловушки, заполненные ак- тивированным углем и охлажденные до температуры жидкого воздуха. Аргон конденсировался и захватывался на поверхности угля, а гелий свободно проходил через ловушку. После нескольких циклов такого процесса ловушка отделялась от системы, соединялась с детектором и нагревалась. Уголь выделял захваченный аргон, и последний поступал в счетчик.

Зарегистрированная в этих экспериментах активность была почти в 10 раз меньше, чем ожидалось в случае, если бы нейтрино и антинейтрино были одинаковы. Она объяснялась фоновыми процессами, главным источником которых были быстрые космические частицы, попадающие в мишень и образующие аргон-37. Таким образом, процесс (5) не осуществляется, и, следовательно, нейтрино и антинейтрино - разные частицы.

Опыты Дэвиса еще продолжались, когда в физике слабых взаимодейс- твий произошло крупнейшее событие - было открыто несохранение четности.

В классической механике известны три закона сохранения: энергии, импульса и момента импульса. Как было доказано Э. Нетер (1918 г.), эти законы являются следствиями симметрии пространства и времени.

Уравнения движения тел не меняются, если перенести начало отсчета времени. Результаты опыта останутся теми же, т.е. время обладает оп- ределенной симметрией - оно однородно. Ни один его промежуток ничем не выделен по отношению к другим. Из этого, по теореме Нетер, следует закон сохранения энергии. Перенос начала координат в пространстве не меняет физических результатов. Из однородности пространства вытекает закон сохранения импульса.

Кроме того, пустое пространство изотропно. Это означает, что в нем нет выделенных направлений, все направления равноправны. Поворот ко- ординат на любой угол не повлияет на результат опыта. Из изотропности пространства следует закон сохранения момента импульса. Можно провести еще одно преобразование - сразу изменить направление всех координатных осей на противоположное. Это эквивалентно тому, что мы отражаем происходящий процесс в зеркале.

Существовала уверенность, что такое отражение тоже ничего не изменит.

То есть физическое явление или результаты эксперимента останутся прежними. Конкретная величина при таком преобразовании может, и изменит знак. Любой вектор - скорость, импульс, сила, напряженность электрического поля и т.п. - меняет знак при отражении на противоположный. Существуют и псевдовекторы - момент импульса (в частности, спин), магнитная индукция и т.п. Псевдовекторы знака не меняют, поскольку их направление связано с направлением вращения (массы, электрического заряда) по или против часовой стрелки. А при отражении в зеркале направление вращения не изменяется. Векторы и псевдовекторы входят в

формулы, описывающие какие-либо процессы, таким образом, что при "переходе в зеркальный мир" результаты этих процессов не меняются.

Пока речь шла об электромагнитном и сильном взаимодействиях, все это строго выполнялось. Никакие опыты не помогли бы отличить "наш" мир от "зеркального", правое направление от левого.

В квантовой механике ( а именно для нее важно такое "скачкообразное" преобразование пространства, как отражение) появляется новый закон сохранения. Он носит название закона сохранения пространственной четности и является следствием зеркальной симметрии пространства (Е. Вигнер, 1927 г.).

Все было ясно вплоть до 1956 г. когда необычное поведение К - мезонов заставило усомниться в том, что для слабого взаимодействия закон сохранения пространственной четности выполняется столь же строго, как для электромагнитного и ядерного. Эти "сомнения" были опубликованы двумя американскими физиками, китайцами по национальности, Ли Тзун-дао и Янг Чжень-инем, "устное" же сомнение впервые было высказано Р. Фейманом на Рочестерской конференции 1956 г. В своей статье они предложили возможные схемы опытов, для проверки этой гипотезы, и сразу же такая проверка начала осуществляться несколькими группами экспериментаторов.

Первой добилась группа, работающая под руководством Ву Цзянь-сюн из Колумбийского университета (США).

Идея опыта состояла в следующем. Если ядра атомов вещества, спо- собного к -распаду, выстроены таким образом, что их спины направлены в одну сторону, то вылетающие из них электроны должны с одинаковой вероятностью лететь как по, так и против спина ядер. Так гласит закон сохранения четности. Если же вероятности вылета в противоположных направлениях окажутся различными, закон будет нарушен. Ведь если в нашем мире существует такое явление, как преимущественный вылет частиц по одному из направлений ( скажем, против спина), то при пространственном отражении процесса спин ядра не измениться, а вектор скорости переменит знак и в зеркальном мире, преимущественный вылет электронов будет происходить по спину ядра.

Появиться возможность отличить наш мир от зеркального, а это про- тиворечит закону сохранения четности.

Опыты потребовавшие применения самой современной экспериментальной техники, полностью подтвердили гипотезу Ли и Янга.

Сохранение четности нарушалось в процессах, которыми управляло слабое взаимодействие.

Почти сразу же выяснилось, что это открытие самым непосредственным образом коснулось нейтрино. Оказалось, что при рассмотрении решения уравнения Дирака для частицы с нулевой массой при условии нарушения пространственной четности, то такая частица должна быть полностью по- ляризована - ее спин всегда и строго направлен по (или против) импульса. Соответствующая ей анитчастица отличается противоположным знаком поляризации.


Страница: