Физика нейтрино
ляется, аннигилирует с электроном среды, и два -кванта, каждый с энергией 0,5 МэВ, разлетаются в противоположные стороны. Мишень была сделана достаточно тонкой, чтобы вылетавшие из нее кванты попадали в баки с жидким сцинтиллятором, установленные по обе стороны от мишени.
Рис. 1. Схема опыта Рейнеса и Коуэна.
А - точка поглощения нейтрино и появления позитрона и нейтрона. В- точка аннигиляции позитрона, С – точка захвата нейтрона атомом кадмия.
Каждый бак содержит 1400 л жидкости. Его внутренняя поверхность покрыта отражающим материалом, чтобы как можно больше света от сцинтилляции собиралось на фотокатоды 110 фотоумножителей, который "просматривают" бак. Для выравнивания светового потока, ФЭУ отделены от сцинтиллятора светопроводами, материалом для которых служит чистый растворитель (без сцинтилляционных добавок).
Первое известие о регистрации нейтрино подают одновременно заре- гистрированные в детекторах анигиляционные -кванты с определенной энергией. Несмотря на то, что детектор был защищен свинцом и бетоном, число фоновых импульсов, имитирующих появление позитрона в мишени, все еще в десятки раз превышало ожидаемый эффект.
Поэтому пришлось прибегнуть к "услугам" нейтрона. Он быстро замед- ляется в воде - за несколько миллионных долей секунды и захватывается ядром кадмия. Кадмий потому и был введен в состав мишени, что с очень большой вероятностью захватывает медленные нейтроны и в результате этого процесс излучает несколько энергичных - квантов. Последние, также попадают в сцинтилляционные детекторы и регистрируются.
Теперь нейтринное событие может быть отделено от фона по следующим признакам:
1. В детекторах одновременно возникают импульсы, соответствующие по энергии анигилиционным квантам.
2. Через определенное время в детекторах, тоже одновременно, появ- ляются импульсы, величина которых лежит в заданном диапазоне. Они связаны с захватом нейтрона ядром кадмия.
Определенные энергии, совпадение по времени, задержка между первым и вторым событием - все эти особенности реакции (4) позволили успешно подавить фон и зарегистрировать нейтрино. В эксперименте использовались две водные мишени и между ними три сцинтилляционных детектора. Общая масса установки кроме внешней свинцовой защиты, превышала 10 т, а счет полезных событий составлял всего лишь 1,7 штуки за час, т.е. 40 штук в сутки! Вместе с тем полное число реакций (4) в 400 литрах воды должно было составить около 2000. Такое уменьшение эффекта произошло потому, что в борьбе с фоном пришлось ввести слишком много критериев отбора полезных событий, и, тем самым, снизить эффективность регистрации нейтрино.
Эффективность регистрации нейтрино рассчитывалась и проверялась в контрольных экспериментах. Опытов было проведено очень много. Напри- мер, для определения наиболее опасной компоненты фона - фона от реактора,
между активной зоной и установкой помещались массивная дополнительная защита. Потоки всех частиц, кроме нейтрино, ослабляются этой защитой. И если наблюдаемые события все-таки каким-либо образом имитируются ими, то число таких событий уменьшается. Однако величина эффекта осталась на уровне 40 событий в сутки. Эксперимент, вместе с контрольными опытами, длился 2085 часов, т.е. около трех месяцев чистого времени.
Точность опыта была не велика, однако позволила утверждать, что вероятность взаимодействия нейтрино с протоном находиться в согласии с результатами теории Ферми.
В течение 1959-1968 гг. группа физиков во главе с Райнесом уточняла экспериментальные результаты исследования реакции (4). Одновременно с
этим, была начата подготовка к другим опытам с реакторными нейтрино: поиска процесса рассеяния нейтрино на электроне ((e)(e’) - взаимодействие) и изучения взаимодействия с ядром атома тяжелого водорода - дейтоном. В первом случае был создан уникальный по чувствительности сцинтилляционный детектор.
После обнаружения нейтрино все сильнее и сильнее в нейтринной фи- зике стала звучать новая тема - возможность рассеяния нейтрино на электроне.
В опубликованной в 1964 году книге академика М.А. Маркова читаем:
"Хотя подобный анализ возможностей, открываемых существованием ((e)(e’))-взаимодействия, очень напоминает дележ шкуры неубитого медведя, все же обсуждение различных порождаемых взаимодействием эф- фектов эвристически очень ценно.
. Хотим мы этого или не хотим, но тенденции в развитии физики слабых взаимодействий привели к тому, что детектирование пока выдуманного ((e)(e’))-взаимодействия становится проблемой фундаментальной важности".
Реакция эта выглядит так:
+ е- ’ + e-, (5)
т.е. ожидается, что налетающее нейтрино рассеивается на электроне, теряя часть своей энергии (’- означает нейтрино с меньшей энергией, чем ). Если процесс обратного- распада (эксперимент Рейнеса и Коуэна) вытекает из самых общих физических принципов, то о существовании рассеяния нейтрино
на электроне заранее известно гораздо меньше. Конечно, очень заманчиво, чтобы по аналогии с электродинамикой слабые силы приводили к своеобразному эффекту Комптона, в котором роль -кванта играло бы рассеивающееся нейтрино. Тогда открывалась возможность для массы интереснейших процессов (например, рождение электрон-позитронных пар летящим нейтрино), важных для физики элементарных частиц и астрофизики.
Реакция (5) была достоверно обнаружена через двадцать три года после опытов Рейнеса и Коуэна и через четырнадцать после опубликования идеи Рейнесом. Все эти годы шло создание и усовершенствование детектора, накопление экспериментальных результатов.
Вероятность ((e)(e’))-рассеяния для реакторных нейтрино в десятки раз меньше, чем вероятность процесса + р e+ + n. Продуктом реакции является электрон отдачи и это не позволяет использовать такую сложную систему отбора полезных событий и подавления фона, как это делалось в опыте Рейнеса и Кроуэна.