Ядерная геофизика
Рефераты >> Физика >> Ядерная геофизика

I.

Что изучает ядерная геофизика.

Ядерная геофизика и радиометрическая разведка – одна из дисциплин, завершающих изучение методов познания геологического строения ЗК (Земной коры).

1-ый вопрос – распространение радиоактивных элементов и стабильных изотопов в Земле, влияние этого распространения на геологическую историю Земли и вопросы определения абсолютного возраста ГП (горная порода), а также изучение процессов, ведущих к концентрации радиоактивных элементов в различных зонах ЗК и к формированию их промышленных месторождений.

2-ой вопрос – методы исследования геологического строения ЗК, основанные на испускании радиоактивного излучения и на изучении ядерных свойств элементов.

Какие задачи решают в геологии методы ядерной геофизики.

- литологическое расчленение ГП – основано на размещении их радиоактивности, особенно важен γ-метод исследования скважин в комплексе с другими геофизическими методами в случае, когда бурение скважин осуществляется без отбора керна или % выноса керна невелик;

- геологическое картирование – основано на различии радиоактивности разных типов пород, а также повышение радиоактивности пород в зоне тектонических нарушений. Широкое использование радиометрии в комплексе с другими геологическими и геофизическими методами;

- радиометрические методы широко применяются во всех видах поисков и разведки ПИ (полезные ископаемые) генетически и парагенетически связанных с ураном и торием;

- разведка, определение глубины и мощности рудных тел, а также оконтуривание границ залегания.

Перечислите основные методы радиометрии.

По условиям естественного залегания:

а) полевые (радиометрическая съёмка) – для приближенной оценки радиоактивности ГП и изучения её изменений по маршруту, профилю или по заданной сетке;

б) методы радиометрического опробования позволяют более точно определить радиоактивность ГП в условиях их естественного залегания.

Классификация ореолов рассеивания:

а) ;

б) .

Цементный состав первичных ореолов

Вторичные ореолы – могут образовываться в результате переноса радиоактивного вещества в твердой, жидкой и газообразной форме.

Механические ореолы – область, вокруг рудного тела, покрытая рудными обломками, образованными при физическом выветривании и устойчивыми в поверхностных условиях.

Водные ореолы – образуются за счет растворения урана, иридия, радона в подземных водах, омывающих рудное тело и выноса их во вмещающие породы.

Солевые ореолы – образуются за счет выпадения (закрепления) растворённого в воде урана при взаимодействии с вмещающими горными поподами или при испарении воды.

Газовые ореолы – рассеивание газообразных продуктов распада вокруг рудного тела или же вокруг механических или солевых ореолов.

Биохимические ореолы – повышенное содержание урана и радия в растениях на участках выпада на поверхность урановых руд или открытых ореолов рассеяния.

Радиационные ореолы – поле радиоактивного излучения образуется вокруг рудных тел и их механических и солевых ореолов.

Механические потоки рассеяния – дальнейший перенос постоянными или временными поверхностными водными потоками продуктов механического разрушения рудного тела из области механических ореолов.

Солевые потоки рассеяния – аналогично механическим потокам рассеяния.

В чём различие радиометрического и ядерно-геофизического методов.

Радиометрические, основаны на изучении естественного радиоактивного излучения, содержания радиоактивных элементов в ГП, водах, биологических объектах.

Ядерно-геофизические, основаны на изучении искусственно созданных полей, а также изучении некоторых явлений, γ излучения возникают в ГП при облучении ГП γ-квантами или нейтронами.

II.

Что такое радиоактивность? Когда и кем она была открыта?

Явление естественной радиоактивности представляет собой процесс самопроизвольного превращения ядер атомов некоторых элементов в ядра других элементов, сопровождающегося выделением энергии и испусканием α, β и γ лучей. Большинство радиоактивных элементов образуют семейства в которых каждый элемент возникает из предыдущего, и в свою очередь превращается в последнее.

Открыто это явление в 1861 г. физиком А.Беккерелем.

Что представляет собой α- и β-частицы и γ-лучи?

α-частицы – ядро атома гелия, состоит из 2-х нейтронов и 2-х протонов из-за этого имеет атомный вес 4, и + заряд = 2-м элементарным электрическим зарядам. Образуется при α-распаде. Методы наблюдения основаны почти полностью на их свойстве производить ионизацию в веществе. Быстродвижущиеся α-частицы искусственным путём получают с помощью ускорителей заряженных частиц.

β-частицы – электроны, или позитроны, испускаемые атомными ядрами при их β-распаде. Кроме того, обязательно испускается электрическая, нейтральная частица с 0-й массой покоя – нейтрино или антинейтрино.

γ-лучи – электромагнитное излучение с весьма короткими длинами волн (10-3 см и меньше). Испускается радиоактивными веществами, а также при торможении быстродвижущихся заряженных частиц (электронов и др.), аннигиляция пар частиц (направление электрона и позитрона), распадом элементарных частиц. γ-лучи принято рассматривать как поток частиц (γ-квантов), а не электромагнитных волн. γ-лучи одно из наиболее проникающих излучений, наибольшую энергию получают при торможении в веществе электронов, ускоренных на ускорителях заряженных частиц. γ-лучи широко применяются в технике, медицине, в пищевой промышленности (стерилизация).

Каковы проникающая и ионизирующая способности отдельных видов излучений?

Наибольшая ионизирующая способность у α – излучения.

Наибольшая проникающая способность у γ – излучения.

Каковы основные виды взаимодействия γ-квантов с веществом и в чём их сущность?

Ослабление потока в веществе происходит в основном за счет фотоэффекта, комитон эффекта и эффекта образования пар.

Фотоэффект – точнее фотоэлектронное поглощение – такое взаимодействие, при котором γ-квант поглощается, а его энергия расходится на отрыв и на передачу кинетической энергии одному из электронов атома, т.е.

Еγ=Есв+Ек,

где Есв – энергия связи электрона в атоме; Ек – кинетическая энергия, передаваемая фотоэлектрону.

Чем больше Есв, тем больше вероятность фотоэффекта Qφ.=> Qφ увеличивается с ростом атомного номера Z вещества; наиболее вероятно взаимодействие с электронами К- и α- оболочек, ближайших к ядру. Фотоэффект возможен, если энергия γ-кванта > энергии связи электронов.

Комитон эффект – заключается в рассеянии γ-кванта электроном. Эти рассеяния подобно столкновению 2-х упругих шаров массой me и mγ=Еγ/с2.

Эффект образования пар – наблюдается при энергии γ-кванта, превышающей суммарно энергию покоя электрона и позитрона (2mec2=1,02 МэВ), когда энергия достаточна для образования пары электрон-позитрон. Для соблюдения закона сохранения импульса этот процесс должен проходить в присутствии 3-го тела, γ передается часть импульса и энергии γ-кванта. Роль такого тела играют преимущественно ядра атомов. Потому, что вероятность эффекта образования пар Qп зависит от заряда ядра


Страница: