Сверхпроводимость и ее применение в физическом эксперименте
ТЕОРИЯ СВЕРХПРОВОДИМОСТИ
Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца (эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление.
Далее оказалось, что при крайне низких температурах целый ряд веществ обладает сопротивлением, по крайней мере, в 10-12 раз меньше, чем при комнатной температуре. Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время как в обычных проводниках под влиянием магнитного поля ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.
Сверхпроводимость исчезает под действием следующих факторов:
1) повышение температуры;
2) действие достаточно сильного магнитного поля;
3) достаточно большая плотность тока в образце;
С повышением температуры до некоторой Tс почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах).
Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической Tс. Минимальное поле Bс, в котором разрушается сверхпроводимость, называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой.
Вс = B0 [1 - (T/Tс)2],
где В0 - критическое поле, экстраполированное к абсолютному нулю температуры.
Для некоторых веществ, по-видимому, имеет место зависимость от Т1 . При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если, повышая магнитное поле уничтожить сверхпроводимость при H=Ht (H - сила поля, Ht - повышенная сила поля: Ht = a*(Tс2 - T2)) , то с понижением интенсивности поля сверхпроводимость появится вновь при поле Ht´< Ht, dH = Ht - Ht´ меняется от образца к образцу и обычно составляет 10% Ht. Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается Tс. Чем ниже температура, тем выше та предельная сила тока it при которой сверхпроводимость уступает место обычной проводимости.
Сверхпроводимость наблюдается как у элементов, так и у сплавов и металлических соединений. Сверхпроводимость есть у Hg, Sn(белое), Pb, Tl, Tn, Ga, Ta, Th, Ti, Nb (иногда Cd).
Идеальный проводник и сверхпроводник
Эффект Мейснера
Для анализа поведения идеального проводника в магнитном поле рассмотрим контур, помещенный в поле с индукцией Ba . Если площадь, ограниченная кольцом равна А, то поток, пронизывающий кольцо, можно описать по формуле
Ф=А×Вa.
При изменении приложенного поля в кольце, согласно закону Ленца, индуцируются токи. Они направлены так, что созданный ими внутри кольца поток стремится компенсировать изменение потока, вызванное переменной приложенного поля. Между индуцированным током и электродвижущей силой (-А×dBа/dt) справедливо следующее соотношение:
-А×dBа/dt=Ri+L×di/dt,
где R и L - полное сопротивление и индуктивность контура.
В обычном кольце наведенные токи из-за конечного сопротивления быстро затухают и поток, пронизывающий контур принимает новое значение. В случае идеальной проводимости R=0, последнее соотношение принимает вид
-А×dBа/dt=L×di/dt
или
Li+ABа=const.
Таким образом, полный магнитный поток через контур без сопротивления (Li+ABа) не может измениться. Даже при снижении внешнего поля до нуля, внутренний поток сохраняется благодаря циркулирующему в замкнутом кольце индуцированного незатухающего тока.
Все вышеизложенное относилось к условию, при котором кольцо, находясь в приложенном магнитном поле, охлаждалось ниже температуры Тс, при которой исчезало сопротивление. Если же контур сначала охладить, а затем приложить внешне поле, то результирующий внутренний поток останется равным нулю, несмотря на наличие внешнего поля.
Рассмотрим поведение идеального проводника в магнитном поле. Предположим, что образец из идеального проводника проходит следующие стадии: сначала охлаждается ниже некоторой температуры, когда падает сопротивление, а затем накладывается магнитное поле. Сопротивление по любому произвольно выбранному замкнутому контуру внутри металла равно нулю. Следовательно, величина магнитного потока, заключенного внутри этого кольца, остается равной нулю. Произвольность выбора контура позволяет заключить, что магнитный поток равен нулю по всему объему образца. Это связано с индуцированными магнитным полем незатухающими токами по поверхности образца. Они создают магнитный поток, плотность которого Вi повсюду внутри металла точно равна по величине и противоположна по плотности потока приложенного магнитного поля Вa. Таким образом, возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем не намагниченном состоянии.
В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.
В течение почти четверти века считали, что единственным характеристическим свойством сверхпроводящего состояния является отсутствие электрического сопротивления. Это означает, что сверхпроводник в магнитном поле будет вести себя так, как описано выше. Однако такой подход приводит к неоднозначному описанию сверхпроводящей фазы.