Некоторые характеристики и свойства микрообъектов
Рефераты >> Физика >> Некоторые характеристики и свойства микрообъектов

Неудивительно, что в свое время предпринимались попытки получить объяснение экспериментальных результатов без привлечения идеи квантования. В этом смысле показательно известное замечание Шредингера, вырвавшееся у него, что называется, под горячую руку: “Если мы собираемся сохранить эти проклятые квантовые скачки, то я жалею, что вообще имел дело с квантовой теорией!” Однако опыт свидетельствовал в пользу квантования; ни для какой альтернативы не оставалось места.

В подобной ситуации есть один выход: надо ввести какие-то новые идеи, которые вместе с идеей дискретности образовывали бы непротиворечивую схему. Такой новой физической идеей и явилась идея корпускулярно-волнового дуализма.

Идея корпускулярно-волнового дуализма. Классическая физика знакомит с двумя видами движения – корпускулярным и волновым. Для первого характерны локализация объекта в пространстве и существование определенной траектории его движения. Для второго характерно, напротив, делокализация в пространстве; с волновым движением не сопоставляет никакого локализованного объекта – это есть движение некоей среды. На уровне макроявлений корпускулярное и волновое движение четко разграничены; одно дело – движение брошенного камня, другое – движение волны, набегающей на прибрежный песок.

Эти привычные представления не могут быть перенесены в квантовую механику. На уровне микроявлений указанное выше четкое разграничение между двумя видами движения в существенной мере стирается – движение микрообъекта характеризуется одновременно и волновыми и корпускулярными свойствами. Если схематически рассматривать классические корпускулы и классические волны как два предельных случая описания движения материи, то микрообъекты должны занять в этой схеме место где-то посередине. Они не являются ни “чистыми” (в классическом понимании) корпускулами, ни “чистыми” волнами – они являются чем-то качественно иным. Можно сказать, что микрообъект в какой-то мере похож на корпускулу, в какой-то мере – на волну, причем эта мера зависит, в частности, от условий, в которых рассматривается микрообъект. Если в классической физике корпускула и волна – две взаимоисключающие друг друга противоположности (либо частица, либо волна) , то теперь, на уровне микроявлений, эти противоположности объединяются в рамках единого микрообъекта. Это обстоятельство и принято называть корпускулярно-волновым дуализмом (“дуализм” означает двойственность) .

Первоначально идея дуализма была применена к электромагнитному излучению. Еще в 1917г. Эйнштейн предложил рассматривать введенные Планком кванты излучения как своеобразные частицы, обладающие не только определенной энергией, но и определенным импульсом: E = hω, p = hω / c.

Позднее (с 1923 г.) эти частицы стали называть фотонами.

Весьма ярко корпускулярные свойства излучения проявились в эффекте Комптона (1923 г.) . Пусть пучок рентгеновских лучей рассеивается на атомах вещества. По классическим представлениям рассеянные лучи должны иметь ту же длину волны, что и падающие. Однако опыт показал, что длина волны рассеянных лучей больше начальной длины волны, причем разница в длинах волн зависит от угла рассеяния. Эффект Комптона получил объяснение в предположении, что пучок рентгеновских лучей ведет себя как поток фотонов, которые испытывают упругие столкновения с электронами атомов, с выполнением закона сохранения энергии и импульса для сталкивающихся частиц. При этом достигалось не только качественное, но и количественное согласие с экспериментом.

В 1924 г. де Бройль предложил распространить идею не только на излучение, но и вообще на все микрообъекты. Конкретно, он предложил с каждым микрообъектом связывать, с одной стороны, корпускулярные характеристики (энергию Е и импульс р.) , а с другой стороны, волновые характеристики (частоту ω и длину волны λ) . Взаимосвязь между характеристиками разного типа осуществляются, по де Бройлю, через постоянную Планка h следующим образом: E = hω, p = 2πh / λ (βςорое из этих соотношений известно как формула де Бройля) . Для фотонов эти соотношения выполняются автоматически, если в формуле p = hω / c подставить ω = =2πc / λ. Ρμелость гипотезы де Бройля состояла в том, что приведенные соотношения предполагались выполняющимися для всех микрообъектов, в частности для таких, у которых есть масса покоя и которые до этого ассоциировались с корпускулами.

Гипотеза де Бройля получила в 1927 г. подтверждение: была обнаружена дифракция электронов. Исследуя прохождение электронов сквозь тонкие пластинки, Дэвисон и Джермер (а также Тартаковский) обнаружили на экране -детекторе характерные дифракционные кольца. Для “электронных” волн кристаллическая решетка мишени сыграла роль дифракционной решетки. Измерение расстояний между дифракционными кольцами для электронов заданной энергии подтвердили формулу де Бройля.

В 1949 г. Фабрикант с сотрудниками поставили интересный опыт. Они пропускали через дифракционное устройство крайне слабый электрический пучок – промежуток времени между последовательными актами пропускания (между двумя электронами) более чем в 10000 раз превышал время, необходимое для прохождения электрона через устройство. Это давало уверенность, что на поведение электрона не влияют другие электроны пучка. Опыт показал, что при длительной экспозиции, позволяющей зарегистрировать на экране-детекторе достаточно большое число электронов, возникала такая же дифракционная картина, как и в случае обычных электронных пучков. Отсюда следовало, что волновые свойства электронов нельзя объяснить как некий эффект коллектива электронов; волновыми свойствами обладает каждый отдельно взятый электрон.

Роль постоянной Планка. Идея квантования вводит дискретность, а дискретность требует определения меры. Роль такой меры играет постоянная Планка. Можно сказать, что эта постоянная как бы определяет “границу” между микроявлениями и макроявлениями. Используя постоянную Планка, а также массу и заряд электрона, можно образовать следующую простейшую композицию, обладающую размерностью длины: r1 = h2 / me2 = 0,53 . 10-8 см (заметим, что r1 есть радиус первой орбиты в теории Бора) . В соответствии с этим величина порядка 10-8 см может рассматриваться как пространственная “граница” микроявлений. Именно таковы линейные размеры атомов.

Если бы при прочих равных условиях постоянная h была бы, например, в 100 раз больше, то “граница” микроявлений оказалась бы порядка 10-4 см. Это означало бы, что микроявления были бы гораздо ближе к нам, к нашим масштабам, атомы стали заметно крупнее. Иными словами, материя оказалась бы более “крупнозернистой” и следовало бы при более крупных масштабах пересматривать классические представления.

Как указывалось ранее, проекции момента микрообъекта отличаются друг от друга на величины, кратные h. Следовательно, здесь постоянная Планка является попросту шагом квантования. Если орбитальный момент много больше h, то квантованием можно пренебречь; в этом случае переходим к классическому моменту импульса. В отличие от орбитального спиновой момент не может быть достаточно большим. Ясно, что здесь квантованием пренебречь принципиально невозможно; именно поэтому спиновой момент и не имеет классического аналога.


Страница: