Ударные волны
Третьему уравнению (1.3) соответствует кривая, называемая адиабатой ударного сжатия или адиабатой Гюгонио; первому уравнению (1.1) для заданной скорости УВ соответствует линия Релея. Точка пересечения линии Релея с кривой Гюгонио определяет конечное состояние среды за фронтом УВ, соответствующее закону сохранения энергии.
1.3. Уравнения состояния вещества.
Толщина фронта УВ в газах имеет порядок длины свободного пробега молекул, т.е. практически можно пренебречь столь малой толщиной и с большой точностью заменить фронт УВ поверхностью разрыва, считая, что при прохождении через нее параметры газа изменяются скачком. В наиболее простом случае распространения УВ в совершенном газе ударная адиабата определяется с помощью закона сохранения энергии на фронте УВ (1.3) и уравнения состояния совершенного газа:
E = pV/(g - 1) , (1.4)
где g = cp/cv - показатель адиабаты.
Используя уравнения (1.3) и (1.4) получим ударную адиабату в виде:
p/p0 = {(g+1)V0 - (g-1)V}/{(g+1)V - (g-1)V0}, (1.5)
В отличие от газов для жидких и твердых сред получить ударную адиабату подобным образом нельзя, так как уравнения их состояния обычно неизвестны. Поэтому в настоящее время ударные адиабаты жидких и твердых сред определяют экспериментально, а по известной адиабате удается построить уравнения состояния. Для этого давление и полную энергию вещества (жидкости или твердого тела) необходимо представить в виде сумм:
p = px + pT + pe и E = Ex + ET + Ee , (1.6)
где px и Ex - упругие («холодные») компоненты давления и внутренней энергии, обусловленные взаимодействием частиц (атомов, молекул) при T=0; pT и ET - тепловые составляющие давления и энергии, обусловленные тепловым движением частиц; pe и Ee - электронные составляющие давления и энергии, обусловленные тепловым возбуждение электронов при температурах порядка 104 К и давлениях порядка 102 ГПа. При температурах T<104 К соотношения (1.6) упрощаются:
p = px + pT и E = Ex + ET , (1.7)
Так как составляющие px и Ex связаны только с силами взаимодействия между частицами и не зависят от температуры, то они представляют собой изотермы при T=0 К: px = px (V) и Ex = Ex (V). Введем для твердого тела соотношение:
pT = ГET / V ,
Коэффициент Грюнайзена Г(V) равен отношению теплового давления pT к плотности тепловой энергии ET / V, колеблется в диапазоне 1 .3 при нормальных условиях и связан с величинами px и V формулой:
Г(V) = 2/3 - V/2(d2px / dV2) / (dpx / dV) . (1.8)
В жидких и твердых средах величины давления и энергии обусловлены как тепловым движением частиц, так и их взаимодействием (тепловые и упругие составляющие).
Для описания экспериментальных результатов наиболее привлекательна пара переменных D-v . Это связано с тем, что для многих твердых сред выполняется закон:
D = a + bv . (1.9)
где a, b - константы. При фазовых переходах и заметной пористости материала (начальной либо накопленной в процессе деструкционного деформирования) наблюдаются отклонения от линейного закона (1.9).
Введем показатель сжимаемости z = (V0 - V) / V0 = 1 - p0V = v/D . Тогда D = a / (1 - bz) и уравнение (1.2), описывающее закон сохранения импульса на фронте УВ, примет вид при p0 ~ 0:
pГ = p0az / (1 - bz)2 , (1.10)
а уравнение для энергии при E0 ~ 0:
EГ = zpГ / 2p0 . (1.11)
Давление и энергию (p и E) при произвольном сжатии можно связать с их значениями на адиабате Гюгонио (pГ и EГ) уравнением состояния:
E = EГ + (p - pГ) / рГ , (1.12)
где Г = V(dp/dE)v - средняя величина параметра Грюнайзена, которую принято считать практически независимой от давления, т.е. pГ = p0Г0 (нулевой индекс соответствует значениям при комнатной температуре и нулевом давлении).
Для расчета изэнтроп необходимо использовать термодинамический закон dE = TdS - pdV, который при dS =0 совместно с уравнениями (1.10) - (1.12) позволяет последовательно вычислить значения p, V и E на изэнтропах.
2. Ударные волны в твердых телах.
2.1. Поведение твердого тела при ударно-волновом нагружении.
Твердое тело по своей природе является сложной квантово-механической системой. Полное математическое описание такой системы невозможно, поэтому обычно рассматриваются более простые приближенные модели. Ограничения, определяющие тип модели, должны относиться к второстепенным процессам и связаны с характером межатомных сил взаимодействия, типом кристаллической решетки, ее дефектами и структурой, а также с основными микроскопическими физико-механическими свойствами твердого тела.
Параметр Грюнайзена, характеризующий отношение теплового давления и тепловой энергии решетки, для твердого тела задается следующим соотношением:
Г = -d{lnQ(V)} / d{lnx} . (2.1)
где Q(V) = hwm / k - температура Дебая, разделяющая высокотемпературную и квантовомеханическую низкотемпературную области (wm - максимальная частота в дебаевском распределении частот); x =V/V0 - безразмерная переменная (V - текущий удельный объем, V0 - удельный объем металла при нормальных условиях).
Процессы деформации и разрушения тела при нагружении изучают как с позиций, основанных на дискретном строении тела, так и на основе макроскопического подхода, связанного с представлением твердого тела в виде области, заполненной непрерывной сплошной средой. Если изучение деформации и разрушения твердого тела с микроскопических позиций основано на анализе искажений кристаллической решетки и соответствующих им напряжений, вызванных действием на тело внешних силовых факторов, то с позиций механики сплошной среды движение частиц тела определяется в большей степени физическим и механическим поведением среды. При этом модель твердого тела может быть представлена сплошной средой с определенными физико-механическими свойствами.
Механическое поведение твердых тел определяется сопротивлением сдвигу, которое связано со свойствами упругости, пластичности и вязкости материала, а также с изменением формы тела. Механическое поведение среды при нагружении описывает уравнение:
si = si (ei , ei`, T, .) , (2.2)
где (s) - тензор напряжений, (e) - тензор деформаций, (e`) – средняя скорость деформации. Уравнение механического поведения среды (2.2) устанавливают экспериментально или теоретически. При этом для суждения о прочности тела необходимо также привлекать механические характеристики (sT - предел текучести, sВ - предел прочности) и критерии (условия) прочности. Под прочностью понимают способность тела сохранять свою сплошность в процессе деформации при нагружении.
В начальной стадии деформации (si < sT) тело испытывает упругую деформацию, затем с увеличением интенсивности напряжений (si > = sT) оно деформируется пластически и при (si = sВ) достигает предельного состояния, при котором возможно нарушение сплошности среды, и переходит в стадию разрушения.
Для процессов распространения ударных волн в металлах наибольший интерес представляет динамическая сжимаемость. Свободную энергию твердого тела можно представить в виде двух слагаемых: F = U0(V) + UD(V, T), где U0(V) - энергия взаимодействия атомов тела при нулевых колебаний; UD(V, T) - энергия колебательного движения атомов тела при T>0 К в приближении Дебая. Тогда можно получить уравнение состояния Ми - Грюнайзена: