Физика и музыка
Чем определяется качество звука? Из нашего рассуждения Рис. следует, что струпа или столб воздуха могут колебаться как целое и в то же время как бы отдельными участками (рис.16). Таким образом, издаваемые ими звуки могут представлять сочетания основных тонов и обертонов. До сих пор мы говорили, что звуки могут различаться в двух отношениях: по интенсивности, или громкости, и по частоте, или высоте тона.
(рис. 16 Факторы, влияющие на качество звука,
издаваемого вибрирующей струной)
Однако опыт показывает, что они различаются еще и в другом отношении, а именно по тембру. Вы можете узнать друзей по их голосам, даже если вы не видите их. Вы можете узнать звук различных музыкальных инструментов по их тембру. Тембр звука был объяснен только в 1862 году, когда немецкий физик Герман фон Гельмгольц (1821—1894) установил, что тембр звука зависит от числа и относительных интенсивностей обертонов, возбуждаемых звучащим телом. Мы получаем тоны совершенно различного тембра при возбуждении щипком струны сонометра в середине и вблизи одного из концов. В последнем случае получается звук. богатый обертонами, в первом же случае звучит главным образом основной тон. Опыт показывает, что тембр звука зависит от того способа каким возбуждается звучащее тело.
Как можно изобразить звуковые волны? Для демонстрации явлений звука можно воспользоваться катодным осциллографом. Этот прибор начинает находить все большее применение в средних школах наше страны
Основная функция осциллографа — вычерчивать на экране (телевизионного типа) график, отражающий изменения приложенного напряжения.
(рис. 17)
a) Малая амплитуда (256 кол/сек)
b) большая амплитуда (256 кол/сек)
c) более высокий тон (512 кол/сек)
d) обертоны и основной тон (256 кол/сек)
Если звуковая волна попадает в микрофон, то возникает небольшое переменное напряжение. Это напряжение изменяется точно с такой же частотой и амплитудой, что и звуковая волна. Изменяющееся напряжение подается по проводам на осциллограф, на экране которого можно видеть изображения, подобные тем, которые приведены на рис.17.
Если слегка ударить резиновым молоточком по камертону, имеющему частоту 256 колебании с секунду, то получится кривая, подобная кривой, а на рисунке. Если ударить сильнее, кривая станет похожей на Ъ. Если ударить по камертону, имеющему частоту 512 колебаний в секунду, то получится график с. При скользящем ударе по ножкам камертона (с частотой 256) возникает картина, подобная д, на рисунке. Здесь виден основной тон вместе с обертонами.
Играя на различных музыкальных инструментах и заставляя различных людей говорить в микрофон, мы можем видеть графики звуков. Удивительно, что графики, соответствующие голосам различных людей, произносящих одни и те же гласные, очень похожи.
Что такое ультразвук? За последние несколько лет большие успехи достигнуты в изучении ультразвуков. Как показывает само название, этот раздел науки занимается изучением колебаний, частоты которых так высоки, что не могут быть обнаружены человеческим ухом. Эти высокочастотные волны имеют множество интересных применений в технике, медицине и других областях науки. Сущность многих действий ультразвука сводится к его «дробящей» способности.
ИТОГИ И ВЫВОДЫ
1. Музыкальные звуки являются результатом быстрых регулярных колебаний тел.
2. Высота тона звука измеряется частотой звуковых волн.
3. Мажорная диатоническая гамма состоит из последовательности тонов с отношением колебаний 1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8 и 2.
4. Мажорное трезвучие состоит из трех топов с отношением частот 4:5:6. Мажорная гамма имеет 3 таких трезвучия.
5. Музыкальный интервал определяется отношением частот обоих тонов интервала. Интервал в одну октаву имеет отношение 2:1.
6. Черные клавиши позволяют играть на рояле в любой желаемой тональности.
7. Темперированная шкала состоит из 13 топов, последовательные частоты каждого из которых в 1,06 раза больше частот предшествующих топов.
8. Всемирный стандарт высоты топа равен 440 колебаниям в секунду для звука ля первой октавы.
9. Кажущееся изменение высоты топа звучащего тела, вызванное относительным движением тела и наблюдателя, называется эффектом Доплера.
10. Тело, колеблющееся с определенной частотой, может вызывать колебания другого тела, которому свойственна эта частота. Явление это называется резонансом.
11. Биения получаются в результате попеременного усиления и ослабления звука
12. Число слышимых за секунду биений равно разности между
частотами звучащих тел.
13. Частоты струи или проволок обратно пропорциональны их длинам, прямо пропорциональны квадратным корням из их натяжений, обратно пропорциональны их диаметрам и обратно пропорциональны квадратным' корням из их плотностей.
14. Частоты колеблющихся столбов воздуха обратно пропорциональны их длинам. Частота открытой трубы вдвое больше частоты закрытой трубы такой же длины.
15. Колеблющиеся тела могут колебаться как целое и участками в одно и то же время. Колебания тела как целого дают основные топы, колебания участков — обертоны.
16. Частоты обертонов струп и открытых труб (2, 3, 4 и т. д.) кратны их основным частотам; для закрытых труб возможны только нечетные кратные (3, 5, 7 и т. д.) частоты.
17. Тембр звука зависит от числа и относительных интенсивностей обертонов, издаваемых звучащим телом.
18. Звуковые волны можно сделать видимыми при помощи катодного осциллографа.
Литература:
1.Учебник Физика – “Л.Эллиот, У.Уилкокс”