Подключение графопостроителя МДГ 105 к IBM PC
Рефераты >> Программирование и компьютеры >> Подключение графопостроителя МДГ 105 к IBM PC

Если функция, описывающая неровность имеет вид при и равна нулю при >,то сдвиг фазы рэлеевской волны DQ оценивается формулой:

, (20)

при этом величину можно интерпретировать как кажущееся относительное замедление фазовой скорости волны относительно плоской поверхности ,

. (21)

Аналогичные оценки для треугольного препятствия:

. (22)

Для того чтобы рассчитать обусловленное шероховатостью затухание рэлеевской волны в борновском приближении, достаточно предположить, что участок шероховатой поверхности ограничен (имеет размеры ) и относительно мал, так что вызываемое им рассеяние может рассматриваться как слабое. Относя полную мощность акустических волн , рассеянных участком поверхности площадью , в объемные продольные, поперечные и рэлеевские волны, соответственно; к мощности падающей волны , проходящей через указанный участок (~), в соответствии с законом сохранения энергии получим следующее выражение для пространственного коэффициента затухания по мощности: . Поскольку ~, а ~, то очевидно, что не зависит от размеров шероховатого участка. Коэффициент затухания по амплитуде при этом определяется как .

Следует отдельно рассмотреть распространение ПАВ вдоль поверхности, на которой имеются периодические системы неоднородностей в виде, например вытравленных мелких канавок, полосок металла, штырьков и т. п. Такие периодические структуры, расположенные на пути распространения волны, являются основой ряда устройств на ПАВ. Дело в том, что для получения требуемых характеристик устройств необходимо иметь возможность управлять распространением волны: отражать волну с малыми потерями, изменять направление распространения волн, рассеивать волны и т. д. Эти операции, как правило невыполнимы при помощи единичного (локального) рассеивающего элемента и только большое число периодически (или квазипериодически) расположенных возмущений на поверхности позволяет реализовать требуемое управление распространением ПАВ. При этом каждый отдельный элемент может мало влиять на распространение волны, но совокупное их действие оказывается значительным.

Характер рассеяния ПАВ на периодически расположенных системах неоднородностей определяется интерференцией волн, рассеянных на отдельных элементах системы, и, значит существенно зависит от соотношения между периодом структуры и длиной волны. В рамках борновского приближения можно считать, что падающая на структуру волна в области расположения неоднородностей не удовлетворяет граничным условиям, и в этих областях возникают напряжения, порождающие рассеянные волновые поля. Эти сторонние напряжения можно представить в виде набора гармоник с волновыми числами (- волновое число падающей волны, - волновое число периодической структуры, -период структуры, -волновое число гармоник напряжений, создаваемых на поверхности, ( ). Если одна из гармоник поверхностных напряжений имеет волновое число, равное или близкое к волновому числу одной из собственных волн системы, происходит интенсивное (резонансное) возбуждение соответствующей волны. Пусть длина волны больше удвоенного периода структуры ( [КР1] >, < ). В этом случае поверхностные напряжения расположены слишком часто (или, что то же самое, волновые числа , и т.д. слишком велики по модулю) и не могут возбуждать волн в системе. Таким образом, при распространении ПАВ по мелкомасштабной ( <<) периодической системе неоднородностей рассеянных волн не возникает. Гармоники напряжений с волновыми числами вызывают приповерхностные колебания, амплитуда которых много меньше амплитуды ПАВ, если возмущение поверхности мало. Учет этих колебаний приводит лишь к небольшому изменению скорости волны Рэлея. При уменьшении длины волны первая пространственная гармоника поверхностных напряжений совпадает по модулю с волновым числом ПАВ, бегущей в противоположном направлении: , . При этом интенсивно генерируется отраженная волна. Эффект можно описать и как сложение в фазе волн, отраженных отдельными канавками. Действительно, из следует, что . Поэтому падающая волна, проходя расстояние между канавками, меняет фазу на , и отраженная от канавки волна, проходя в обратном направлении расстояние , оказывается в фазе с волной, отраженной от предыдущей канавки.


Страница: