Экспертные системыРефераты >> Программирование и компьютеры >> Экспертные системы
входная механизм заключения
информация вывода
рис.1
Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов (рис.2). Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.
В любой момент времени в системе существуют три типа знаний:
- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.
- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
|
Результаты анализов
и входные данные
|
выбор и ввод
исходных данных
|
|
наблюдения пользователи
|
|
интерпретация правила
|
|
|
|
заключения
рис.2 Схема работы ЭС.
1.3. Отличительные особенности. Экспертные системы первого и второго поколения.
1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения кон-
фигурации систем ЭВМ, не может ставить медицинские диагнозы.
2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС. Например, программа анализа инфекции в крови может быть применена в пульманологии путем замены базы знаний, используемой с тем же самым механизмом вывода.
3. Наиболее подходящая область применения- решение задач дедуктивным методом. Например, правила или эвристики выражаются в виде пар посылок и заключений типа “если-то”.
4. Эти системы могут объяснять ход решения задачи понятным пользователю способом. Обычно мы не принимаем ответ эксперта, если на вопрос “Почему ?” не можем получить логичный ответ. Точно так же мы должны иметь возможность спросить систему, основанную на знаниях, как было получено конкретное заключение.
5. Выходные результаты являются качественными (а не количественными).
6. Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.
Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматривавшихся задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.