Синтез микропрограммного управляющего автоматаРефераты >> Программирование и компьютеры >> Синтез микропрограммного управляющего автомата
Далее коды состояний заносим в соответствующие столбцы прямой таблицы переходов (таблица 7) и формируем логические выражения для функций возбуждения.
7.4 Получение логических выражений для функций возбуждения D-триггеров
Логические выражения для каждой функции возбуждения D-триггера получают по таблице как конъюнкции соответствующих исходных состояний am и входных сигналов, которые объединены знаками дизъюнкции для всех строк, содержащих данную функцию возбуждения.
D1= a3x2va6va7x6va8x7
D2= a2x1va3x2va4va5va7x6
D3= a0x1va1x2va2
D4= a0va5va6va8x7x8va9x9
Аналогично составляются логические выражения для функций выходов.
y1= a0x1va1x2va3x2
y2= a0x1va2x1
y3= a0x1va1x2va3x2x3va3x2
y4= a1x2va4x4va5x5
y5= a6
y6= a1x2va4x4
y7= a8x7
y8=a9x9
После выделения общих частей в логических выражениях и некоторого их упрощения получаем логические уравнения для построения функциональной схемы управляющего автомата.
m=a1x2va4x4
n=a0x1
k=nva1x2va3x2
p=a8x7
q=a2x1
r=a3x2
D1= r v y5 v a7x6 v y7
D2= q v r v a4 v a5 v a7x6
D3= n v y6 v a2
D4= a0 v a5 v y5 v a8x7x8 v a9x9
Аналогично упрощаем логические выражения для функций выходов.
y1= k
y2= n v q
y3= k v rx3
y4= m v a5x5
y5= a6
y6= m
y7= p
y8=a9x9
Цена комбинационной схемы по Квайну для автомата Мили, с использованием в качестве элементов памяти D-триггеров, равна С=59, причем в схеме предполагается использовать 4-входовой дешифратор.
7.5 Кодирование на RS- триггерах
Однако в качестве элементов памяти возможно использование не только D-триггеров, также используются RS-триггеры. Но при использовании RS-триггеров придется перекодировать состояния автомата, кодирование осуществим способом минимизирующим число переключений элементов памяти.
Для этого сначала выпишем матрицу M - матрицу всех возможных переходов автомата. Состояниям автомата a0 и a1 присвоим коды: К(a0)=0000, К(a1)=0001. Далее из матрицы М составим подматрицу M2, в которую запишем переходы из 2 состояния. В множество В2 выпишем коды уже закодированных состояний, а в множество C1 коды с кодовым расстоянием "1" от кодов В2. Закодировав состояние a2, выпишем матрицу М3 для кодирования следующего состояния автомата. Кодирование состояния a3 аналогично a2, причем для определения наиболее выгодного кода будем находить суммы кодовых расстояний между множествами Вi и Di. Код с наименьшей суммой и является наиболее оптимальным, когда все суммы получились одинаковыми выбираем любой код и кодируем это состояние.
00 k0=0000
01 k1=0001
12
19 12 B2 ={0001}
22 M2= 22 C1={0011,0101,1001}
M= 23 23 D2={0011,0101,1001}
34 W0011=1
39 W0101=1
45 W1001=1
56 k2=0011
67
78
80
88
89
99
23 B3={0011}
M3= 34 C2={0010,0111,1011}
39 D3={0010,0111,1011}
W0010=1
W0111=1
W1011=1
k3=0010
34 B4={0 010}
M4= 45 C3={0110,1010}
D4={0110,1010}
W0110=1
W1010=1
k4=0110
45 B5={0110}
M5= 56 C4={0100,0111,1110}
75 D5={0100,0111,1110}
W0100=1
W0111=1
W1110=1
k5=0111
56 B6={0111}
M6= 67 C5={0101,1111)}
D6={0101,1111)}
W0101=1
W1111=1
k6=0101
67 B7={0111,0101}
M7= 75 C5={1111}
78 C6={0100,1101}
D7={1111,0100,1101}
W1111=ô1111-0111ô2+ô1111-0101ô2=1+2=3
W0100=ô0100-0111ô2+ô0100-0101ô2=2+1=3
W1101=ô1101-0111ô2+ô1101-0101ô2=2+1=3
k7=0100
78 B8={0000,0100}
M8= 80 C0={1000}
88 C7={1100}
89 D8={1000,1100}
W1100=ô1100-0000ô2+ô1100-0100ô2=2+1=3
W1000=ô1000-0000ô2+ô1000-0100ô2=1+2=3
k8=0100
19 B9={0000,0001,0010,1100}
39 C0={1000}
M9= 89 C1={1001} C3={1010}
90 C8={1000,1101,1110}
99 D9={1000,1001,1010,1101,1110}
D\B |
0000 |
0001 |
0010 |
1100 |
W |
1000 |
1 |
2 |
2 |
1 |
6 |
1001 |
2 |
1 |
3 |
2 |
8 |
1010 |
2 |
3 |
1 |
2 |
8 |
1101 |
3 |
2 |
4 |
1 |
10 |
1110 |
3 |
4 |
2 |
1 |
10 |