Синтез микропрограммного управляющего автомата
Рефераты >> Программирование и компьютеры >> Синтез микропрограммного управляющего автомата

Содержание

Введение

1 Постановка задачи

2 Описание используемого алгоритма умножения

2.1 Алгоритм умножения чисел в форме с ПЗ с простой коррекцией

2.2 Алгоритм умножения первым способом

3 Ручной подсчет

4 Выбор и описание структурной схемы ОА

5 Реализация содержательной ГСА

6 Построение отмеченной ГСА

7 Синтез МПА в соответствии с моделью Мили

7.1 Построение графа автомата

7.2 Построение прямой структурной таблицы переходов и выходов

7.3 Кодирование на D-триггерах

7.4 Получение логических выражений для функций возбуждения D-триггеров и функций выходов

7.5 Кодирование на RS-триггерах

7.6 Получение логических выражений для функций возбуждения RS-триггеров

7.7 Кодирование на T-триггерах

7.8 Получение логических выражений для функций возбуждения T-триггеров

7.9 Кодирование на счетчике

7.10 Получение уравнений для счетчика

8 Синтез МПА в соответствии с моделью Мура

8.1 Построение графа автомата

8.2 Построение прямой структурной таблицы переходов и выходов

8.3 Кодирование на D-триггерах

8.4 Получение логических выражений для функций возбуждения D-триггеров и функций выходов

8.5 Кодирование на RS- триггерах

8.6 Получение логических выражений для функций возбуждения RS- триггеров и функций выходов

9 Построение функциональной схемы микропрограммного управляющего автомата

Заключение

Библиографический список

Перечень сокращений

Введение

Потребность в вычислениях возникла у людей на самых ранних стадиях развития человеческого общества. Причем с самого начала для облегчения счета люди использовали различные приспособления. Многие из них были весьма интересными и остроумными по принципу действия, но все они обязательно требовали, чтобы в процессе вычислений активно участвовал человек-оператор. Качественно новый этап развития вычислительной техники наступил с изобретением и созданием электронных вычислительных машин, которые работают автоматически, без участия человека, в соответствии с заранее заданной программой. Появление таких машин вызвано объективными условиями современного развития науки, техники и народного хозяйства. Во многих областях человеческой деятельности уже в середине ХХ века объем и сложность вычислительных работ настолько возросли, что решение некоторых задач без применения вычислительной техники было бы практически не возможным. В настоящее время электронные вычислительные машины применяются во многих областях науки, техники и народного хозяйства. В основном они используются: для решения сложных математических и инженерных задач, в качестве управляющих машин в промышленности и военной технике, в сфере обработки информации.

1 Постановка задачи

Требуется разработать МПА, управляющий операцией умножения двоичных чисел в форме с плавающей запятой и характеристикой в дополнительном коде первым способом с простой коррекцией.

Функциональную схему устройства построить в основном логическом базисе. Операнды разрядностью 4 байта (тридцать два разряда) поступают по входной шине (ШИВх) в дополнительном коде (ДК), результат также в ДК выводится по выходной шине (ШИВых). В младших 24 разрядах операнда хранится мантисса со знаком, а в следующих 8 разрядах - характеристика.

2 Описание используемого алгоритма умножения

Процесс умножения состоит из последовательности операций сложения и сдвигов.

2.1 Алгоритм умножения чисел в форме с ПЗ с простой коррекцией

1. Определить знак произведения сложением по модулю два знаковых разрядов сомножителей.

2. Перемножить модули мантисс сомножителей по правилам с ФЗ:

2.1. Выполнить коррекцию, если хотя бы один из сомножителей отрицательный по правилу введения коррекции.

Правила введения коррекции при умножении чисел в ДК:

- Если сомножители положительны, коррекции нет.

- Если один из сомножителей отрицателен, к псевдопроизведению надо прибавить ДК от модуля положительного сомножителя.

- Если оба сомножителя отрицательны, к псевдопроизведению надо прибавить ДК от модулей дополнительных кодов обоих сомножителей, то есть их прямые коды.

2.2. Перемножить модули сомножителей, представленных в ДК, одним из четырех способов получить псевдопроизведение.

3. Определить характеристику произведения алгебраическим сложением характеристик сомножителей.

4. Нормализовать мантиссу результата и выполнить округление если необходимо.

2.2 Алгоритм умножения первым способом

Умножение с младших разрядов множителя со сдвигом частных сумм вправо.

В каждом такте цикла умножения первым способом необходимо:

2.1 Сложить множимое с предыдущей частной суммой, если очередной разряд множителя равен 1, и результат (новую частную сумму) запомнить; в случае если очередной разряд множителя равен 0 суммирование не выполнять;

2.2 Уменьшить вдвое частную сумму, что равносильно сдвигу ее на один разряд вправо.

3 Ручной подсчет

Выполним ручной подсчет в соответствии с выше указанным алгоритмом.

В качестве множителя возьмём число 9, а в качестве множимого 13.

3.1 Сомножители положительные (A>0, B>0)

A = 9 = 10012, Апк = 0,1001, Адк = 0,1001

B = 13= 11012, Впк = 0,1101, Вдк = 0,1101

3.1.1 Определим знак произведения: 0 + 0 = 0

3.1.2 Перемножим модули сомножителей:

Таблица 1

Множимое

Множитель

Сумматор

Пояснения

0,1101

0,1001

0,00000000

0,11010000

0,11010000

Сложение

 

0,01101000

Сдвиг

0,0100

0,00110100

Сдвиг

0,0010

0,00011010

Сдвиг

0,0001

0,00011010

0,11010000

0,11101010

Сложение

 

0,01110101

Сдвиг

Получили псевдопроизведение: 0,01110101

3.1.3 Коррекция не нужна, так как оба множителя положительные.

3.1.4 Присвоение произведению знака:

(A*B)дк=0,01110101

(A*B)пк=0,01110101

A*B = (9)*(13) = 117 = 11101012

3.2 Сомножители разных знаков (А<0, B>0)


Страница: